GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Kent :Elsevier Science & Technology,
    Keywords: Prokaryotes. ; Microbiology. ; Electronic books.
    Description / Table of Contents: Volume 41 of Methods in Microbiology is a methods book designed to highlight procedures that will revitalize the purposes and practices of prokaryotic systematics. This volume will notably show that genomics and computational biology are pivotal to the new direction of travel and will emphasise that new developments need to be built upon historical good practices, notably the continued use of the nomenclatural type concept and the requirement to deposit type strains in at least two service culture collections in different countries. Detailed protocols on cutting edge methods Prepared by leading international experts in the relevant fields.
    Type of Medium: Online Resource
    Pages: 1 online resource (368 pages)
    Edition: 1st ed.
    ISBN: 9780128004432
    Series Statement: Issn Series ; v.Volume 41
    DDC: 579.3
    Language: English
    Note: Front Cover -- New Approaches to Prokaryotic Systematics -- Copyright -- Dedication -- Contents -- Contributors -- Preface -- Chapter 1: The Need for Change: Embracing the Genome -- 1. A brief history of genomic sequencing of prokaryotes -- 2. Why Sequence the Genomes of Prokaryotes? -- 3. The State-of-the-Art -- 4. Where We Are Going -- Acknowledgement -- References -- Chapter 2: An Introduction to Phylogenetics and the Tree of Life -- 1. Introduction -- 2. Step 1: Posing a question -- 3. Step 2: Choosing Relevant Sequences -- 3.1. Obtaining 16S rRNA Sequences for Bacteria, Archaea and Eukarya -- 3.2. A note on the availability and use of data and methods -- 4. Step 3: Aligning Sequences and Editing the Alignment -- 5. Step 4: The theory of Fitting and Selecting a Phylogenetic Model -- 5.1. Markov nucleotide substitution models -- 5.2. Inferring phylogenies under Markov substitution models -- 5.3. Frequentist inference -- 5.4. Bayesian inference -- 5.5. Model comparison and assessment -- 5.6. Frequentist methods -- 5.7. Bayesian model choice -- 6. Step 5: Inferring Trees-Practical Guidelines for fitting and comparing Markov substitution models -- 6.1. Alignment formats for phylogeny programs -- 6.2. Inferring maximum likelihood phylogenies using RAxML -- 6.3. Bayesian analyses with PhyloBayes -- 6.4. Posterior predictive checks -- 7. Step 6: Interpreting the Phylogenetic Tree -- Conclusions -- Acknowledgements -- References -- Chapter 3: The All-Species Living Tree Project -- 1. Introduction -- 2. Sources of Information -- 2.1. Classification of microbial databases -- 2.1.1. Taxonomy (LPSN and Bergey's Manual) -- 2.1.2. Type-strain information (StrainInfo database) -- 2.1.3. Sequences and alignments (ARB and SILVA) -- 3. Database creation and updating -- 4. Features of the Database -- 4.1. Optimized SSU and LSU alignments. , 4.2. Curated hierarchical classification -- 4.3. Risk-group classification -- 4.4. Taxonomic thresholds -- 5. Phylogenetic trees -- 6. LTP as a Taxonomic Tool -- Acknowledgements -- References -- Chapter 4: 16S rRNA Gene-Based Identification of Bacteria and Archaea using the EzTaxon Server -- 1. Introduction -- 2. Use of 16S rRNA gene sequences in prokaryotic systematics -- 2.1. Sequencing of 16S rRNA genes -- 2.2. Calculation of nucleotide sequence similarity values of 16S rRNA gene sequences -- 3. Identification of Bacteria Using the EzTaxon Database -- 3.1. EzTaxon database -- 3.2. Algorithm for ``EzTaxon search´´ -- 3.3. Overall workflow from Sanger DNA sequence data -- 3.4. Assembly and trimming of sequences -- 3.5. Manual editing of sequences using the secondary structure information -- 3.5.1. Manual editing of sequences with EzEditor -- 3.6. Identification of strains using the EzTaxon server -- 3.7. Phylogenetic analysis -- Concluding remarks -- Acknowledgement -- References -- Chapter 5: Revolutionizing Prokaryotic Systematics Through Next-Generation Sequencing -- 1. Introduction -- 2. Sequencing Approaches -- 3. Bioinformatic Analyses -- 3.1. De novo assembly and mapping -- 3.2. Annotation -- 3.3. Comparative genomic analysis -- 3.4. SNP extraction and functional characteristics -- 3.5. Phylogenetic analyses -- 4. Applications of Next-Generation Sequencing Technology -- 4.1. Prokaryotic systematics -- 4.2. Pathogen evolution, transmission and adaptation -- 4.3. Genetic basis of phenotypic characteristics -- 4.4. Metagenomics -- 4.5. Target resequencing -- 4.6. RNA-Seq and transcriptomics -- Conclusions -- Acknowledgements -- References -- Chapter 6: Whole-Genome Analyses: Average Nucleotide Identity -- 1. Introduction -- 1.1. Calculation of average nucleotide identity -- 1.2. Theoretical background: BLAST/MUMmer software. , 2. Preparation and DNA Sequencing -- 2.1. Strain cultivation -- 2.2. DNA extraction and quantification -- 2.3. Whole-genome sequencing -- 3. ANI Calculations Using JSpecies -- 3.1. Installation -- 3.2. Operation -- 3.3. Calculations on-line -- 4. Interpretation and publication of results -- 5. Application to Prokaryotic Classification: Case Studies -- Concluding remarks -- Acknowledgements -- References -- Chapter 7: Whole-Genome Sequencing for Rapid and Accurate Identification of Bacterial Transmission Pathways -- 1. Introduction -- 2. The Sequencing Revolution -- 2.1. Second-generation sequencing technologies -- 2.1.1. 454 pyrosequencing -- 2.1.2. Illumina sequencing technology -- 2.1.3. Ion Torrent -- 3. Bacterial typing with next-generation sequencing -- 4. Identifying transmission pathways using whole-genome sequencing - The toolkit -- 4.1. Mapping and alignment of whole genomes -- 4.1.1. Indexing -- 4.1.1.1. Hash tables -- 4.1.1.2. The Burrows-Wheeler transform -- 4.1.2. Realigning indels -- 4.1.3. The SAM format -- 4.1.4. Identifying variation from mapped reads -- 4.2. De novo assembly and genome alignment -- 4.2.1. Read correction -- 4.2.2. Assemblers -- 4.2.2.1. Overlap-layout-consensus -- 4.2.2.2. de Bruijn graphs -- 4.2.2.3. Platform-specific assemblers -- 4.2.3. Scaffolding and gap filling -- 4.2.4. Identifying variation using co-assembly -- 4.3. Identifying variation from whole-genome assemblies -- 4.3.1. Whole-genome alignment -- 4.3.1.1. BLAT -- 4.3.1.2. MUMmer -- 4.3.1.3. Mauve -- 4.3.1.4. Mugsy -- 4.4. Identifying transmissions using whole-genome variation -- 4.4.1. SNP distances - Defining a cutoff -- 4.4.2. Phylogenetic evidence -- 4.4.3. Phylodynamics -- 5. Combining genomic and epidemiological evidence -- 6. Future Directions -- References. , Chapter 8: Identification of Conserved Indels that are Useful for Classification and Evolutionary Studies -- 1. Limitations of the phylogenetic trees for understanding microbial classification -- 2. Characteristics that are well-suited for classification -- 3. Conserved signature indels and Their usefulness for classification and evolutionary studies -- 4. Identification of Conserved Signature Indels in Protein Sequences -- 4.1. Creation of multiple sequence alignments -- 4.2. Identification of potential conserved indels in the sequence alignments -- 4.3. Blast searches on potential conserved indels to identify useful conserved indels -- 4.4. Formatting of the conserved indels -- 5. Interpreting the Significance of Conserved Indels -- 6. Correspondence of the Results Obtained from CSIs with rRNA and Other Phylogenetic Approaches -- 7. Importance of the discovered CSIs for understanding microbial classification and phylogeny -- Acknowledgements -- References -- Chapter 9: Reconciliation Approaches to Determining HGT, Duplications, and Losses in Gene Trees -- 1. Introduction -- 2. Bacterial species tree -- 3. Gene Family -- 4. Evolution of Genes in Bacterial Genomes -- 5. Gene Tree/Species Tree Reconciliation -- 5.1. Protocol for running AnGST -- 5.2. Interpreting the results of AnGST analyses -- 6. Analysis at the Genome Scale -- 6.1. Protocol for running COUNT -- Concluding Remarks -- Acknowledgements -- References -- Chapter 10: Multi-Locus Sequence Typing and the Gene-by-Gene Approach to Bacterial Classification and Analysis of Population -- 1. Introduction -- 1.1. Historical perspective -- 1.2. Multi-locus population analyses -- 2. Multi-locus sequence typing -- 3. Whole-Genome Data Analyses -- 3.1. Gene-by-gene analysis of WGS data -- 3.2. The Bacterial Isolate Genome Sequence Database -- 3.3. Isolate and sequence databases. , 3.4. Reference sequence and profile definitions database -- 3.5. Database Integrity -- 3.6. Gene nomenclature -- 3.7. Typing and analysis schemes -- 4. Examples of Gene-by-Gene Analysis: Neisseria -- 4.1. Ribosomal multi-locus sequence typing -- 4.2. Neisseria rplF assay -- 5. Examples of Gene-by-Gene Analysis: Campylobacter -- 5.1. Core genome multi-locus sequence typing -- 5.2. Whole-genome multi-locus sequence typing -- Conclusions -- References -- Chapter 11: Multi-locus Sequence Analysis: Taking Prokaryotic Systematics to the Next Level -- 1. Introduction -- 2. Multi-Locus Sequence Analysis -- 2.1. Underlying concepts -- 2.2. Selection of gene loci -- 2.3. Generating sequences -- 2.4. Data analysis -- 2.4.1. Properties of loci -- 2.4.1.1. Sequence alignments -- 2.4.1.2. Loci statistics -- 2.4.1.3. Establishing STs -- 2.4.2. Phylogenetic analysis -- 2.4.2.1. Models of evolution -- 2.4.2.2. Evaluating phylogenetic congruence -- 2.4.2.3. Construction of phylogenetic trees -- 2.5. Comparison with other taxonomic methods -- 2.6. MLSAs: Advantages and disadvantages -- 2.7. MLSA databases -- 3. Application of MLSAs in Prokaryotic Systematics -- 3.1. The genus Streptomyces -- 3.1.1. The Streptomyces MLSA scheme -- 3.1.2. DNA:DNA hybridization and MLSAs -- 3.2. Classification of the S. pratensis phylogroup -- 3.3. MLSA of phytopathogenic Streptomyces species -- 3.4. MLSA: Actinobacteria -- 4. Detection of Ecotypes Based on MLSAs -- 5. MLSA Based on Whole Genome Sequences -- References -- Chapter 12: Bacterial Typing and Identification By Genomic Analysis of 16S-23S rRNA Intergenic Transcribed Spacer (ITS) Seque -- 1. Introduction -- 2. Methods -- 2.1. Search and download bacterial whole-genome sequences -- 2.2. Annotation of rrn alleles. , 2.3. Extraction of the gene components (16S, 23S and 5S) and extra genic regions (ITS1, ITS2, pre-16S and post-5S) that make.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...