GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journal of Neurosurgery Publishing Group (JNSPG)  (6)
  • 1
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 112, No. 3 ( 2010-03), p. 528-538
    Abstract: Event-related cerebral oscillatory changes reflect regional brain activation. In a previous study, the authors proposed a new method to determine language dominance: examine frontal oscillatory changes during silent reading by using synthetic aperture magnetometry (SAM). The authors' aims in the present study were to establish a normal template for this method, to confirm the results of their previous study with a larger patient population, and to evaluate their method with respect to language localization. Methods A statistical group analysis of 14 healthy volunteers was conducted to establish a normal control. Language dominance and localization were then evaluated in a larger population of 123 consecutive patients. Study participants were instructed to silently read 100 visually presented words. Using SAM, the spatial distribution of the oscillatory changes was obtained as the Student t statistic by comparing the current density for each voxel between 1 second before and 1 second after each word presentation. Group analyses of the healthy volunteers were performed using statistical nonparametric mapping. Language dominance in the patients was determined according to the laterality index (LI) calculated using peak t values of the left and right frontal desynchronizations. Language dominance was prospectively assessed, and the results were compared with those of the Wada test (63 patients). Language localization results were quantitatively compared with those of stimulation mapping (17 patients). Results Group analysis of the healthy volunteers indicated β to low γ band desynchronization in the left frontal area and α to β desynchronization in the left parietotemporal areas. In patients, the frontal language areas were detected in 118 persons (95.9%). Lateralization of β or low γ desynchronization in the inferior or middle frontal gyri corresponded well with language dominance. The introduction of the LI resulted in a quantitative evaluation of language dominance, whose results were concordant with those of the Wada test in 51 (85.0%) of 60 cases. The distance between the estimated frontal language areas and stimulation-positive sites was 6.0 ± 7.1 mm (mean ± SD). Conclusions This study is the first in which magnetoencephalography (MEG) was used to determine language dominance in a large population, and the results were compared with those of the Wada test. Moreover, language localization results obtained using MEG were compared with those obtained by invasive mapping. The authors' method, which is based on neuromagnetic oscillatory changes, is a new approach for noninvasively evaluating the frontal language areas, a procedure that has been problematic using MEG dipole methods. Synthetic aperture magnetometry is a noninvasive alternative to Wada testing for language dominance and helps to determine stimulation sites for invasive mapping.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2010
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 107, No. 3 ( 2007-09), p. 555-559
    Abstract: The authors previously reported that navigation-guided repetitive transcranial magnetic stimulation (rTMS) of the precentral gyrus relieves deafferentation pain. Stimulation parameters were 10 trains of 10-second 5-Hz TMS pulses at 50-second intervals. In the present study, they used various stimulation frequencies and compared efficacies between two types of lesions. Methods Patients were divided into two groups: those with a cerebral lesion and those with a noncerebral lesion. The rTMS was applied to all the patients at frequencies of 1, 5, and 10 Hz and as a sham procedure in random order. The effect of rTMS on pain was rated by patients using a visual analog scale. Results The rTMS at frequencies of 5 and 10 Hz, compared with sham stimulation, significantly reduced pain, and the pain reduction continued for 180 minutes. A stimulation frequency of 10 Hz may be more effective than 5 Hz, and at 1 Hz was ineffective. The effect of rTMS at frequencies of 5 and 10 Hz was greater in patients with a noncerebral lesion than those with a cerebral lesion. Conclusions High-frequency (5- or 10-Hz) rTMS of the precentral gyrus can reduce intractable deafferentation pain, but low-frequency stimulation (at 1 Hz) cannot. Patients with a noncerebral lesion are more suitable candidates for high-frequency rTMS of the precentral gyrus.
    Type of Medium: Online Resource
    ISSN: 0022-3085
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2007
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 125, No. 5 ( 2016-11), p. 1053-1060
    Abstract: Epilepsy surgery is of known benefit for drug-resistant temporal lobe epilepsy (TLE); however, a certain number of patients suffer significant decline in verbal memory after hippocampectomy. To prevent this disabling complication, a reliable test for predicting postoperative memory decline is greatly desired. Therefore, the authors assessed the value of electrical stimulation of the parahippocampal gyrus (PHG) as a provocation test of verbal memory decline after hippocampectomy on the dominant side. METHODS Eleven right-handed, Japanese-speaking patients with medically intractable left TLE participated in the study. Before surgery, they underwent provocative testing via electrical stimulation of the left PHG during a verbal encoding task. Their pre- and posthippocampectomy memory function was evaluated according to the Wechsler Memory Scale-Revised (WMS-R) and/or Mini-Mental State Examination (MMSE) before and 6 months after surgery. The relationship between postsurgical memory decline and results of the provocative test was evaluated. RESULTS Left hippocampectomy was performed in 7 of the 11 patients. In 3 patients with a positive provocative recognition test, verbal memory function, as assessed by the WMS-R, decreased after hippocampectomy, whereas in 4 patients with a negative provocative recognition test, verbal memory function, as assessed by the WMS-R or MMSE, was preserved. CONCLUSIONS Results of the present study suggest that electrical stimulation of the PHG is a reliable provocative test to predict posthippocampectomy verbal memory decline.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2016
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Journal of Neurosurgery Publishing Group (JNSPG) ; 2001
    In:  Neurosurgical Focus Vol. 11, No. 3 ( 2001-09), p. 1-5
    In: Neurosurgical Focus, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 11, No. 3 ( 2001-09), p. 1-5
    Abstract: The authors tested a modified motor cortex stimulation (MCS) protocol for the treatment of deafferentation pain in 15 patients: eight patients with poststroke pain, four with brachial plexus injury, two with phantom limb pain, and one with spinal cord injury. Methods Preoperative pharmacological tests were performed with phentolamine, lidocaine, ketamine, thiopental, morphine, and a placebo. In 12 patients we placed a 20– or 40–grid electrode in the subdural space to determine the best stimulation point for pain relief over a few weeks and therefore the optimum position for a permanent internal device. In four patients, the MCS devices were implanted in the interhemispheric fissure to reduce lower-extremity pain. In one patient, the MCS device was placed within the central sulcus, and a 20-grid electrode was placed on the brain surface. In two patients with pain extending from the upper extremity to the hyperbody, dual-electrode devices were implanted to drive two electrodes. In 10 of the 15 patients MCS-induced pain reduction was achieved (four with excellent, two with good, and four with fair alleviation of pain). The result of pharmacological testing indicated that patients with ketamine sensitivity seem to be good candidates for MCS. Conclusions Test stimulation with a subdural multigrid electrode was helpful in locating the best stimulation point for pain relief.
    Type of Medium: Online Resource
    ISSN: 1092-0684
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2001
    detail.hit.zdb_id: 2026589-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 131, No. 3 ( 2019-09), p. 676-686
    Abstract: It is important to correctly and precisely define the target volume for radiotherapy (RT) of malignant glioma. 11 C-methionine (MET) positron emission tomography (PET) holds promise for detecting areas of glioma cell infiltration: the authors’ previous research showed that the magnitude of disruption of MET and 18 F-fluorodeoxyglucose (FDG) uptake correlation (decoupling score [DS]) precisely reflects glioma cell invasion. The purpose of the present study was to analyze volumetric and geometrical properties of RT target delineation based on DS and compare them with those based on MRI. METHODS Twenty-five patients with a diagnosis of malignant glioma were included in this study. Three target volumes were compared: 1) contrast-enhancing core lesions identified by contrast-enhanced T1-weighted images (T1Gd), 2) high-intensity lesions on T2-weighted images, and 3) lesions showing high DS (DS ≥ 3; hDS). The geometrical differences of these target volumes were assessed by calculating the probabilities of overlap and one encompassing the other. The correlation of geometrical features of RT planning and recurrence patterns was further analyzed. RESULTS The analysis revealed that T1Gd with a 2.0-cm margin was able to cover the entire high DS area only in 6 (24%) patients, which indicates that microscopic invasion of glioma cells often extended more than 2.0 cm beyond a Gd-enhanced core lesion. Insufficient coverage of high DS regions with RT target volumes was suggested to be a risk for out-of-field recurrence. Higher coverage of hDS by T1Gd with a 2-cm margin (i.e., higher values of “[T1Gd + 2 cm] /hDS”) had a trend to positively impact overall and progression-free survival. Cox regression analysis demonstrated that low coverage of hDS by T1Gd with a 2-cm margin was predictive of disease recurrence outside the Gd-enhanced core lesion, indicative of out-of-field reoccurrence. CONCLUSIONS The findings of this study indicate that MRI is inadequate for target delineation for RT in malignant glioma treatment. Expanding the treated margins substantially beyond the MRI-based target volume may reduce the risk of undertreatment, but it may also result in unnecessary irradiation of uninvolved regions. As MET/FDG PET-DS seems to provide more accurate information for target delineation than MRI in malignant glioma treatment, this method should be further evaluated on a larger scale.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2019
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Journal of Neurosurgery Publishing Group (JNSPG) ; 2011
    In:  Journal of Neurosurgery Vol. 114, No. 6 ( 2011-06), p. 1715-1722
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 114, No. 6 ( 2011-06), p. 1715-1722
    Abstract: A brain-machine interface (BMI) offers patients with severe motor disabilities greater independence by controlling external devices such as prosthetic arms. Among the available signal sources for the BMI, electrocorticography (ECoG) provides a clinically feasible signal with long-term stability and low clinical risk. Although ECoG signals have been used to infer arm movements, no study has examined its use to control a prosthetic arm in real time. The authors present an integrated BMI system for the control of a prosthetic hand using ECoG signals in a patient who had suffered a stroke. This system used the power modulations of the ECoG signal that are characteristic during movements of the patient's hand and enabled control of the prosthetic hand with movements that mimicked the patient's hand movements. Methods A poststroke patient with subdural electrodes placed over his sensorimotor cortex performed 3 types of simple hand movements following a sound cue (calibration period). Time-frequency analysis was performed with the ECoG signals to select 3 frequency bands (1–8, 25–40, and 80–150 Hz) that revealed characteristic power modulation during the movements. Using these selected features, 2 classifiers (decoders) were trained to predict the movement state—that is, whether the patient was moving his hand or not—and the movement type based on a linear support vector machine. The decoding accuracy was compared among the 3 frequency bands to identify the most informative features. With the trained decoders, novel ECoG signals were decoded online while the patient performed the same task without cues (free-run period). According to the results of the real-time decoding, the prosthetic hand mimicked the patient's hand movements. Results Offline cross-validation analysis of the ECoG data measured during the calibration period revealed that the state and movement type of the patient's hand were predicted with an accuracy of 79.6% (chance 50%) and 68.3% (chance 33.3%), respectively. Using the trained decoders, the onset of the hand movement was detected within 0.37 ± 0.29 seconds of the actual movement. At the detected onset timing, the type of movement was inferred with an accuracy of 69.2%. In the free-run period, the patient's hand movements were faithfully mimicked by the prosthetic hand in real time. Conclusions The present integrated BMI system successfully decoded the hand movements of a poststroke patient and controlled a prosthetic hand in real time. This success paves the way for the restoration of the patient's motor function using a prosthetic arm controlled by a BMI using ECoG signals.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2011
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...