GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • John Wiley & Sons  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 8411–8420, doi:10.1002/2014GL062256.
    Description: Large, deep-keeled icebergs are ubiquitous in Greenland's outlet glacial fjords. Here we use the movement of these icebergs to quantify flow variability in Sermilik Fjord, southeast Greenland, from the ice mélange through the fjord to the shelf. In the ice mélange, a proglacial mixture of sea ice and icebergs, we find that icebergs consistently track the glacier speed, with slightly faster speeds near terminus and episodic increases due to calving events. In the fjord, icebergs accurately capture synoptic circulation driven by both along-fjord and along-shelf winds. Recirculation and in-/out-fjord variations occur throughout the fjord more frequently than previously reported, suggesting that across-fjord velocity gradients cannot be ignored. Once on the shelf, icebergs move southeastward in the East Greenland Coastal Current, providing wintertime observations of this freshwater pathway.
    Description: Funding for this study was provided by National Science Foundation grants OCE-1130008 and ARC-0909274, and by the University of Oregon.
    Description: 2015-06-11
    Keywords: Icebergs ; Fjord circulation ; Ice mélange ; East Greenland Current ; Greenland ice sheet ; Iceberg melt
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: video/quicktime
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 43 (2016): 11,287–11,294, doi:10.1002/2016GL070718.
    Description: Freshwater fluxes from the Greenland ice sheet have increased over the last two decades due to increases in liquid (i.e., surface and submarine meltwater) and solid ice (i.e., iceberg) fluxes. To predict potential ice sheet-ocean-climate feedbacks, we must know the partitioning of freshwater fluxes from Greenland, including the conversion of icebergs to liquid (i.e., meltwater) fluxes within glacial fjords. Here we use repeat ~0.5 m-resolution satellite images from two major fjords to provide the first observation-based estimates of the meltwater flux from the dense matrix of floating ice called mélange. We find that because of its expansive submerged area (〉100 km2) and rapid melt rate (~0.1–0.8 m d−1), the ice mélange meltwater flux can exceed that from glacier surface and submarine melting. Our findings suggest that iceberg melt within the fjords must be taken into account in studies of glacial fjord circulation and the impact of Greenland melt on the ocean.
    Description: 2017-05-09
    Keywords: Icebergs ; Ice melange ; Fjord ; Submarine melting ; Freshwater fluxes ; Greenland
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...