GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 7639–7647, doi:10.1002/2015GL065043.
    Description: Oceanic internal waves are closely linked to turbulence. Here a relationship between vertical wave number (kz) spectra of fine-scale vertical kinetic energy (VKE) and turbulent dissipation ε is presented using more than 250 joint profiles from five diverse dynamic regimes, spanning latitudes between the equator and 60°. In the majority of the spectra VKE varies as inline image. Scaling VKE with inline image collapses the off-equatorial spectra to within inline image but underestimates the equatorial spectrum. The simple empirical relationship between VKE and ε fits the data better than a common shear-and-strain fine-scale parameterization, which significantly underestimates ε in the two data sets that are least consistent with the Garrett-Munk (GM) model. The new relationship between fine-scale VKE and dissipation rate can be interpreted as an alternative, single-parameter scaling for turbulent dissipation in terms of fine-scale internal wave vertical velocity that requires no reference to the GM model spectrum.
    Description: National Science Foundation Grant Numbers: OCE-0728766, OCE-0425361, OCE-0424953, OCE-1029722, OCE-0622630, OCE-1030309, OCE-1232962, and Office of Naval Research Grant Number: N00014-10-10315
    Keywords: Internal waves ; Turbulence ; Mixing ; Vertical kinetic energy ; Finestructure parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 5571-5586, doi:10.1029/2018JC014096.
    Description: The Arctic ice cover influences the generation, propagation, and dissipation of internal waves, which in turn may affect vertical mixing in the ocean interior. The Arctic internal wavefield and its relationship to the ice cover is investigated using observations from Ice‐Tethered Profilers with Velocity and Seaglider sampling during the 2014 Marginal Ice Zone experiment in the Canada Basin. Ice roughness, ice concentration, and wind forcing all influenced the daily to seasonal changes in the internal wavefield. Three different ice concentration thresholds appeared to determine the evolution of internal wave spectral energy levels: (1) the initial decrease from 100% ice concentration after which dissipation during the surface reflection was inferred to increase, (2) the transition to 70–80% ice concentration when the local generation of internal waves increased, and (3) the transition to open water that was associated with larger‐amplitude internal waves. Ice roughness influenced internal wave properties for ice concentrations greater than approximately 70–80%: smoother ice was associated with reduced local internal wave generation. Richardson numbers were rarely supercritical, consistent with weak vertical mixing under all ice concentrations. On decadal timescales, smoother ice may counteract the effects of lower ice concentration on the internal wavefield complicating future predictions of internal wave activity and vertical mixing.
    Description: Seagliders Grant Number: N00014‐12‐10180; Deployment and subsequent analysis efforts of the ITP‐Vs Grant Numbers: N00014‐12‐10799, N00014‐12‐10140; Joint Ocean Ice Studies cruise; Beaufort Gyre Observing System
    Description: 2019-02-14
    Keywords: Internal waves ; Arctic ; Near‐inertial ; Ice roughness ; Ice concentration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...