GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • JOHN WILEY & SONS LTD  (1)
  • Wiley  (1)
Document type
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    JOHN WILEY & SONS LTD
    In:  EPIC3Quarterly Journal of the Royal Meteorological Society, JOHN WILEY & SONS LTD, 141(686), pp. 153-165, ISSN: 0035-9009
    Publication Date: 2017-05-30
    Description: A set of relaxation experiments using the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric model is used to analyze the severe European winter of 1962/1963. We argue that the severe winter weather was associated with a wave train that originated in the tropical Pacific sector (where weak La Ni˜na conditions were present) and was redirected towards Europe, a process we suggest was influenced by the combined effect of the strong easterly phase of the Quasi-Biennial Oscillation (QBO) and unusually strong easterly winds in the upper equatorial troposphere that winter. A weak tendency towards negative North Atlantic Oscillation (NAO) conditions in December, associated with extratropical sea-surface temperature and sea-ice anomalies, might have acted as a favourable preconditioning. The redirection of the wave train towards Europe culminated in the stratospheric sudden warming at the end of January 1963. We argue that in February the sudden warming event helped maintain the negative NAO regime, allowing the severe weather to persist for a further month. A possible influence from the Madden–Julian Oscillation, as well as a role for internal atmospheric variability, is noted.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: In austral winter, biological productivity at the Angolan shelf reaches its maximum. The alongshore winds, however, reach their seasonal minimum suggesting that processes other than local wind‐driven upwelling contribute to near‐coastal cooling and upward nutrient supply, one possibility being mixing induced by internal tides (ITs). Here, we apply a three‐dimensional ocean model to simulate the generation, propagation, and dissipation of ITs at the Angolan continental slope and shelf. Model results are validated against moored acoustic Doppler current profiler and other observations. Simulated ITs are mainly generated in regions with a critical/supercritical slope typically between the 200‐ and 500‐m isobaths. Mixing induced by ITs is found to be strongest close to the coast and gradually decreases offshore thereby contributing to the establishment of cross‐shore temperature gradients. The available seasonal coverage of hydrographic data is used to design simulations to investigate the influence of seasonally varying stratification characterized by low stratification in austral winter and high stratification in austral summer. The results show that IT characteristics, such as their wavelengths, sea surface convergence patterns, and baroclinic structure, have substantial seasonal variations and additionally strong spatial inhomogeneities. However, seasonal variations in the spatially averaged generation, onshore flux, and dissipation of IT energy are weak. By evaluating the change of potential energy, it is shown, nevertheless, that mixing due to ITs is more effective during austral winter. We argue that this is because the weaker background stratification in austral winter than in austral summer acts as a preconditioning for IT mixing.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...