GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Medical Internet Research, JMIR Publications Inc., Vol. 24, No. 8 ( 2022-8-30), p. e40384-
    Abstract: Electronic health records (EHRs) with large sample sizes and rich information offer great potential for dementia research, but current methods of phenotyping cognitive status are not scalable. Objective The aim of this study was to evaluate whether natural language processing (NLP)–powered semiautomated annotation can improve the speed and interrater reliability of chart reviews for phenotyping cognitive status. Methods In this diagnostic study, we developed and evaluated a semiautomated NLP-powered annotation tool (NAT) to facilitate phenotyping of cognitive status. Clinical experts adjudicated the cognitive status of 627 patients at Mass General Brigham (MGB) health care, using NAT or traditional chart reviews. Patient charts contained EHR data from two data sets: (1) records from January 1, 2017, to December 31, 2018, for 100 Medicare beneficiaries from the MGB Accountable Care Organization and (2) records from 2 years prior to COVID-19 diagnosis to the date of COVID-19 diagnosis for 527 MGB patients. All EHR data from the relevant period were extracted; diagnosis codes, medications, and laboratory test values were processed and summarized; clinical notes were processed through an NLP pipeline; and a web tool was developed to present an integrated view of all data. Cognitive status was rated as cognitively normal, cognitively impaired, or undetermined. Assessment time and interrater agreement of NAT compared to manual chart reviews for cognitive status phenotyping was evaluated. Results NAT adjudication provided higher interrater agreement (Cohen κ=0.89 vs κ=0.80) and significant speed up (time difference mean 1.4, SD 1.3 minutes; P 〈 .001; ratio median 2.2, min-max 0.4-20) over manual chart reviews. There was moderate agreement with manual chart reviews (Cohen κ=0.67). In the cases that exhibited disagreement with manual chart reviews, NAT adjudication was able to produce assessments that had broader clinical consensus due to its integrated view of highlighted relevant information and semiautomated NLP features. Conclusions NAT adjudication improves the speed and interrater reliability for phenotyping cognitive status compared to manual chart reviews. This study underscores the potential of an NLP-based clinically adjudicated method to build large-scale dementia research cohorts from EHRs.
    Type of Medium: Online Resource
    ISSN: 1438-8871
    Language: English
    Publisher: JMIR Publications Inc.
    Publication Date: 2022
    detail.hit.zdb_id: 2028830-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: JMIR Formative Research, JMIR Publications Inc., Vol. 6, No. 6 ( 2022-6-24), p. e33834-
    Abstract: Delirium in hospitalized patients is a syndrome of acute brain dysfunction. Diagnostic (International Classification of Diseases [ICD]) codes are often used in studies using electronic health records (EHRs), but they are inaccurate. Objective We sought to develop a more accurate method using natural language processing (NLP) to detect delirium episodes on the basis of unstructured clinical notes. Methods We collected 1.5 million notes from 〉 10,000 patients from among 9 hospitals. Seven experts iteratively labeled 200,471 sentences. Using these, we trained three NLP classifiers: Support Vector Machine, Recurrent Neural Networks, and Transformer. Testing was performed using an external data set. We also evaluated associations with delirium billing (ICD) codes, medications, orders for restraints and sitters, direct assessments (Confusion Assessment Method [CAM] scores), and in-hospital mortality. F1 scores, confusion matrices, and areas under the receiver operating characteristic curve (AUCs) were used to compare NLP models. We used the φ coefficient to measure associations with other delirium indicators. Results The transformer NLP performed best on the following parameters: micro F1=0.978, macro F1=0.918, positive AUC=0.984, and negative AUC=0.992. NLP detections exhibited higher correlations (φ) than ICD codes with deliriogenic medications (0.194 vs 0.073 for ICD codes), restraints and sitter orders (0.358 vs 0.177), mortality (0.216 vs 0.000), and CAM scores (0.256 vs –0.028). Conclusions Clinical notes are an attractive alternative to ICD codes for EHR delirium studies but require automated methods. Our NLP model detects delirium with high accuracy, similar to manual chart review. Our NLP approach can provide more accurate determination of delirium for large-scale EHR-based studies regarding delirium, quality improvement, and clinical trails.
    Type of Medium: Online Resource
    ISSN: 2561-326X
    Language: English
    Publisher: JMIR Publications Inc.
    Publication Date: 2022
    detail.hit.zdb_id: 2941716-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: JMIR AI, JMIR Publications Inc., Vol. 2 ( 2023-7-26), p. e46769-
    Abstract: Deep learning models have shown great success in automating tasks in sleep medicine by learning from carefully annotated electroencephalogram (EEG) data. However, effectively using a large amount of raw EEG data remains a challenge. Objective In this study, we aim to learn robust vector representations from massive unlabeled EEG signals, such that the learned vectorized features (1) are expressive enough to replace the raw signals in the sleep staging task, and (2) provide better predictive performance than supervised models in scenarios involving fewer labels and noisy samples. Methods We propose a self-supervised model, Contrast with the World Representation (ContraWR), for EEG signal representation learning. Unlike previous models that use a set of negative samples, our model uses global statistics (ie, the average representation) from the data set to distinguish signals associated with different sleep stages. The ContraWR model is evaluated on 3 real-world EEG data sets that include both settings: at-home and in-laboratory EEG recording. Results ContraWR outperforms 4 recently reported self-supervised learning methods on the sleep staging task across 3 large EEG data sets. ContraWR also supersedes supervised learning when fewer training labels are available (eg, 4% accuracy improvement when less than 2% of data are labeled on the Sleep EDF data set). Moreover, the model provides informative, representative feature structures in 2D projection. Conclusions We show that ContraWR is robust to noise and can provide high-quality EEG representations for downstream prediction tasks. The proposed model can be generalized to other unsupervised physiological signal learning tasks. Future directions include exploring task-specific data augmentations and combining self-supervised methods with supervised methods, building upon the initial success of self-supervised learning reported in this study.
    Type of Medium: Online Resource
    ISSN: 2817-1705
    Language: English
    Publisher: JMIR Publications Inc.
    Publication Date: 2023
    detail.hit.zdb_id: 3161670-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: JMIR Medical Informatics, JMIR Publications Inc., Vol. 9, No. 2 ( 2021-2-10), p. e25457-
    Abstract: Medical notes are a rich source of patient data; however, the nature of unstructured text has largely precluded the use of these data for large retrospective analyses. Transforming clinical text into structured data can enable large-scale research studies with electronic health records (EHR) data. Natural language processing (NLP) can be used for text information retrieval, reducing the need for labor-intensive chart review. Here we present an application of NLP to large-scale analysis of medical records at 2 large hospitals for patients hospitalized with COVID-19. Objective Our study goal was to develop an NLP pipeline to classify the discharge disposition (home, inpatient rehabilitation, skilled nursing inpatient facility [SNIF], and death) of patients hospitalized with COVID-19 based on hospital discharge summary notes. Methods Text mining and feature engineering were applied to unstructured text from hospital discharge summaries. The study included patients with COVID-19 discharged from 2 hospitals in the Boston, Massachusetts area (Massachusetts General Hospital and Brigham and Women’s Hospital) between March 10, 2020, and June 30, 2020. The data were divided into a training set (70%) and hold-out test set (30%). Discharge summaries were represented as bags-of-words consisting of single words (unigrams), bigrams, and trigrams. The number of features was reduced during training by excluding n-grams that occurred in fewer than 10% of discharge summaries, and further reduced using least absolute shrinkage and selection operator (LASSO) regularization while training a multiclass logistic regression model. Model performance was evaluated using the hold-out test set. Results The study cohort included 1737 adult patients (median age 61 [SD 18] years; 55% men; 45% White and 16% Black; 14% nonsurvivors and 61% discharged home). The model selected 179 from a vocabulary of 1056 engineered features, consisting of combinations of unigrams, bigrams, and trigrams. The top features contributing most to the classification by the model (for each outcome) were the following: “appointments specialty,” “home health,” and “home care” (home); “intubate” and “ARDS” (inpatient rehabilitation); “service” (SNIF); “brief assessment” and “covid” (death). The model achieved a micro-average area under the receiver operating characteristic curve value of 0.98 (95% CI 0.97-0.98) and average precision of 0.81 (95% CI 0.75-0.84) in the testing set for prediction of discharge disposition. Conclusions A supervised learning–based NLP approach is able to classify the discharge disposition of patients hospitalized with COVID-19. This approach has the potential to accelerate and increase the scale of research on patients’ discharge disposition that is possible with EHR data.
    Type of Medium: Online Resource
    ISSN: 2291-9694
    Language: English
    Publisher: JMIR Publications Inc.
    Publication Date: 2021
    detail.hit.zdb_id: 2798261-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...