GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-01-22
    Description: Three halotolerant bacterial species were isolated from locally oil-polluted water sample for their ability to utilize asphaltene (Asph) fraction as sole carbon and energy source. These bacteria degrade 83–96% of 2500 mg/L asphaltene within 21 d at 30∘C and pH7. They were identified as Bacillus sp. Asph1, Pseudomonas aeruginosa Asph2, and Micrococcus sp. Asph3. A statistically significant difference at 95% confidence level for cell growth and percentage biodegradation (%BD) was observed in all biotreatment flasks relative to noninoculated (–ve control) flasks. Regression analysis estimated a quadratic polynomial equation for Asph biodegradation as a function of cell growth. Gel permeation chromatographic (GPC) and Fourier transform infrared (FT-IR) analysis revealed decrease in Asph average molecular weights and significant alternations in functional groups after biotreatment, respectively.
    Electronic ISSN: 2090-875X
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-30
    Description: Three halotolerant bacterial species were isolated from locally oil-polluted water sample for their ability to utilize asphaltene (Asph) fraction as sole carbon and energy source. These bacteria degrade 83–96% of 2500 mg/L asphaltene within 21 d at 30∘C and pH7. They were identified as Bacillus sp. Asph1, Pseudomonas aeruginosa Asph2, and Micrococcus sp. Asph3. A statistically significant difference at 95% confidence level for cell growth and percentage biodegradation (%BD) was observed in all biotreatment flasks relative to noninoculated (–ve control) flasks. Regression analysis estimated a quadratic polynomial equation for Asph biodegradation as a function of cell growth. Gel permeation chromatographic (GPC) and Fourier transform infrared (FT-IR) analysis revealed decrease in Asph average molecular weights and significant alternations in functional groups after biotreatment, respectively.
    Electronic ISSN: 2090-875X
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-17
    Description: Three halotolerant bacterial species were isolated from locally oil-polluted water sample for their ability to utilize asphaltene (Asph) fraction as sole carbon and energy source. These bacteria degrade 83–96% of 2500 mg/L asphaltene within 21 d at 30∘C and pH7. They were identified as Bacillus sp. Asph1, Pseudomonas aeruginosa Asph2, and Micrococcus sp. Asph3. A statistically significant difference at 95% confidence level for cell growth and percentage biodegradation (%BD) was observed in all biotreatment flasks relative to noninoculated (–ve control) flasks. Regression analysis estimated a quadratic polynomial equation for Asph biodegradation as a function of cell growth. Gel permeation chromatographic (GPC) and Fourier transform infrared (FT-IR) analysis revealed decrease in Asph average molecular weights and significant alternations in functional groups after biotreatment, respectively.
    Electronic ISSN: 2090-875X
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-06-21
    Description: Three halotolerant bacterial species were isolated from locally oil-polluted water sample for their ability to utilize asphaltene (Asph) fraction as sole carbon and energy source. These bacteria degrade 83–96% of 2500 mg/L asphaltene within 21 d at 30°C and pH7. They were identified as Bacillus sp. Asph1, Pseudomonas aeruginosa Asph2, and Micrococcus sp. Asph3. A statistically significant difference at 95% confidence level for cell growth and percentage biodegradation (%BD) was observed in all biotreatment flasks relative to noninoculated (–ve control) flasks. Regression analysis estimated a quadratic polynomial equation for Asph biodegradation as a function of cell growth. Gel permeation chromatographic (GPC) and Fourier transform infrared (FT-IR) analysis revealed decrease in Asph average molecular weights and significant alternations in functional groups after biotreatment, respectively.
    Electronic ISSN: 2090-875X
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-16
    Description: Three halotolerant bacterial species were isolated from locally oil-polluted water sample for their ability to utilize asphaltene (Asph) fraction as sole carbon and energy source. These bacteria degrade 83–96% of 2500 mg/L asphaltene within 21 d at 30∘C and pH7. They were identified as Bacillus sp. Asph1, Pseudomonas aeruginosa Asph2, and Micrococcus sp. Asph3. A statistically significant difference at 95% confidence level for cell growth and percentage biodegradation (%BD) was observed in all biotreatment flasks relative to noninoculated (–ve control) flasks. Regression analysis estimated a quadratic polynomial equation for Asph biodegradation as a function of cell growth. Gel permeation chromatographic (GPC) and Fourier transform infrared (FT-IR) analysis revealed decrease in Asph average molecular weights and significant alternations in functional groups after biotreatment, respectively.
    Electronic ISSN: 2090-875X
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...