GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • production  (1)
  • temperature  (1)
  • Springer  (2)
  • Inter-Research
Document type
Publisher
  • Springer  (2)
  • Inter-Research
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic ecology 29 (1995), S. 369-376 
    ISSN: 1573-5125
    Keywords: body size ; biomass ; production ; macrobenthos ; size spectra ; intertidal communities ; feeding type
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Energy equivalence assumes equal contribution of large and small species to production and energy flow in communities. As in a double logarithmic plot, physiological rates decline with body weight by −0.25, log biomass should increase by 0.25 and log abundance decline by −0.75 with log species weight, when this concept is valid. This was tested with annual data sets of the macrobenthos of 4 intertidal sites in the German Wadden Sea (Königshafen) and 3 sites in a south Portuguese lagoon (Ria Formosa). Only abundance data from two of these sites displayed significantly negative slopes with mean body size of the species. Biomass and secondary production data were significantly positively correlated with mean body size for all Ria Formosa sites and also for the biomass of a mussel bed in Königshafen. However, high variation in body size of the individuals of a species limits interpretation of these plots. It is preferable to test this concept by body weight classes regardless of its species composition. At Königshafen, biomass and production displayed two distinct peaks. One peak at small body size was caused by browsing species. The other peak at larger body size was caused by animals which potentially extract their food from the water column. This bimodality was only vaguely reflected at one station in the Ria Formosa, possibly because of a dominance of detritus feeding species. In a normalized form (log biomass or production / width of size classvs. log size class), these spectra imply a dominance of small individuals in biomass and production at all sites (except for a mussel bank at Königshafen). This is interpreted as a consequence of permanent disturbances.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5117
    Keywords: nutrient flux ; nitrogen ; phosphate ; tidal flats ; temperature ; geographical comparison
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract During an annual cycle, flux rates of oxygen, nitrate, nitrite, ammonium, phosphate and silicate were measured in light and dark bell jars at three sites in Ria Formosa (Algarve, Portugal) enclosing either a natural macrophytic community (macroalgae on sand or mud, a seagrass bed of Zostera noltii) or bare sediments. The results are compared with a preceeding study in which the same bell jar technique has been applied in the Sylt-Rømø Bay of the northern Wadden Sea. Nitrate flux was mainly directed from the water column to the benthic communities in Ria Formosa, as well as in the Sylt-Rømø Bay. However, nitrate uptake was higher in the northern, more eutrophic study area. In Ria Formosa, nutrient concentrations were lower than in the Sylt-Rømø Bay possibly due to strong water exchange with Atlantic waters. High temperatures and strong insolation had a greater impact on nitrate fluxes in Ria Formosa than in the Sylt-Rømø Bay. Bioturbating macrofauna increased ammonium efflux in the Sylt- Rømø Bay while this effect was not as pronounced in the Ria Formosa study sites. Benthic phosphate uptake dominated in the Ria Formosa and was correlated to initial phosphate concentrations in incoming waters. At both study sites, oxygen and nutrient fluxes were correlated with temperature. Additionally, flux rates were strongly influenced by biotic components and levels of eutrophication. A literature survey showed that mainly in temperate regions, material fluxes increase with temperature, whereas in warmer areas, ammonium and phosphate fluxes between sediment and water were generally lower.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...