GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inter Research  (1)
  • Springer International Publishing  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2024-02-07
    Description: The blue mussel (Mytilus species complex) is an important ecosystem engineer, and salinity can be a major abiotic driver of mussel functioning in coastal ecosystems. However, little is known about the interactive effects of abiotic drivers and trematode infection. This study investigated the combined effects of salinity and Himasthla elongata and Renicola roscovita metacercarial infections on the filtration capacity, growth, and condition of M. edulis from the Baltic Sea. In a laboratory experiment, groups of infected and uninfected mussels were exposed to a wide range of salinities (6−30, in steps of 3) for 1 mo. Shell growth was found to be positively correlated with salinity and optimal at 18−24 at the end of the experiment, imposed by constraints in shell calcification under lower salinities. Mussel shell growth was not affected by H. elongata infection. While salinity had only a minor effect on tissue dry weight, infected mussels had a significantly lower tissue dry weight than uninfected mussels. Most interestingly, the combination of salinity and trematode infections negatively affected the mussels’ condition indices at lower salinity levels (6 and 9), suggesting that trematode infections are more detrimental to mussels when combined with freshening. A significant positive effect of salinity on mussel filtration was found, with an initial optimum at salinity 18 shifting to 18−24 by the end of the experiment. These findings indicate that salinity and parasite infections act as synergistic stressors for mussels, and enhance the understanding of potential future ecosystem shifts under climate change-induced freshening in coastal waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer International Publishing
    In:  EPIC3YOUMARES 8 – Oceans Across Boundaries: Learning from each other, YOUMARES 8 – Oceans Across Boundaries: Learning from each other, Springer International Publishing, pp. 179-195, ISBN: 978-3-319-93284-2
    Publication Date: 2023-06-21
    Description: Microplastic research started at the turn of the millennium and is of growing interest, as microplastics have the potential to affect a whole range of organisms, from the base of the food web to top predators, including humans. To date, most studies are initial assessments of microplastic abundances for a certain area, thereby generally distinguishing three different sampling matrices: water, sediment and biota samples. Those descriptive studies are important to get a first impression of the extent of the problem, but for a proper risk assessment of ecosystems and their inhabitants, analytical studies of microplastic fluxes, sources, sinks, and transportation pathways are of utmost importance. Moreover, to gain insight into the effects microplastics might have on biota, it is crucial to identify realistic environmental concentrations of microplastics. Thus, profound knowledge about the effects of microplastics on biota is still scarce. Effects can vary regarding habitat, functional group of the organism, and polymer type for example, making it difficult to find quick answers to the many open questions. In addition, microplastic research is accompanied by many methodological challenges that need to be overcome first to assess the impact of microplastics on aquatic systems. Thereby, a development of standardized operational protocols (SOPs) is a pre-requisite for comparability among studies. Since SOPs are still lacking and new methods are developed or optimized very frequently, the aim of this chapter is to point out the most crucial challenges in microplastic research and to gather the most recent promising methods used to quantify environmental concentrations of microplastics and effect studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...