GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-22
    Description: Re-activation of androgen receptor (AR) activity is the main driver for development of castration-resistant prostate cancer. We previously reported that the ubiquitin ligase Siah2 enhanced AR transcriptional activity and prostate cancer cell growth. Among the genes we found to be regulated by Siah2 was AKR1C3, which encodes a key androgen biosynthetic enzyme implicated in castration-resistant prostate cancer development. Here, we found that Siah2 inhibition in CWR22Rv1 prostate cancer cells decreased AKR1C3 expression as well as intracellular androgen levels, concomitant with inhibition of cell growth in vitro and in orthotopic prostate tumors. Re-expression of either wild-type or catalytically inactive forms of AKR1C3 partially rescued AR activity and growth defects in Siah2 knockdown cells, suggesting a nonenzymatic role for AKR1C3 in these outcomes. Unexpectedly, AKR1C3 re-expression in Siah2 knockdown cells elevated Siah2 protein levels, whereas AKR1C3 knockdown had the opposite effect. We further found that AKR1C3 can bind Siah2 and inhibit its self-ubiquitination and degradation, thereby increasing Siah2 protein levels. We observed parallel expression of Siah2 and AKR1C3 in human prostate cancer tissues. Collectively, our findings identify a new role for AKR1C3 in regulating Siah2 stability and thus enhancing Siah2-dependent regulation of AR activity in prostate cancer cells.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    The American Society for Biochemistry and Molecular Biology (ASBMB)
    Publication Date: 2016-07-16
    Description: Mouse pluripotent cells, such as embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs), provide excellent in vitro systems to study imperative pre- and postimplantation events of in vivo mammalian development. It is known that mouse ESCs are dynamic heterogeneous populations. However, it remains largely unclear whether and how EpiSCs possess heterogeneity and plasticity similar to that of ESCs. Here, we show that EpiSCs are discriminated by the expression of a specific marker T (Brachyury) into two populations. The T-positive (T+) and the T-negative (T−) populations can be interconverted within the same culture condition. In addition, the two populations display distinct responses to bone morphogenetic protein (BMP) signaling and different developmental potentials. The T− EpiSCs are preferentially differentiated into ectoderm lineages, whereas T+ EpiSCs have a biased potential for mesendoderm fates. Mechanistic studies reveal that T+ EpiSCs have an earlier and faster response to BMP4 stimulation than T− EpiSCs. Id1 mediates the commitment of T− EpiSCs to epidermal lineage during BMP4 treatment. On the other hand, Snail modulates the conversion of T+ EpiSCs to mesendoderm fates with the presence of BMP4. Furthermore, T expression is essential for epithelial-mesenchymal transition during EpiSCs differentiation. Our findings suggest that the dynamic heterogeneity of the T+/T− subpopulation primes EpiSCs toward particular cell lineages, providing important insights into the dynamic development of the early mouse embryo.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-27
    Description: Naturally occurring N-glycoproteins exhibit glycoform heterogeneity with respect to N-glycan sequon occupancy (macroheterogeneity) and glycan structure (microheterogeneity). However, access to well-defined glycoproteins is always important for both basic research and therapeutic purposes. As a result, there has been a substantial effort to identify and understand the catalytic properties of N-glycosyltransferases, enzymes that install the first glycan on the protein chain. In this study we found that ApNGT, a newly discovered cytoplasmic N-glycosyltransferase from Actinobacillus pleuropneumoniae, has strict selectivity toward the residues around the Asn of N-glycosylation sequon by screening a small library of synthetic peptides. The inherent stringency was subsequently demonstrated to be closely associated with a critical residue (Gln-469) of ApNGT which we propose hinders the access of bulky residues surrounding the occupied Asn into the active site. Site-saturated mutagenesis revealed that the introduction of small hydrophobic residues at the site cannot only weaken the stringency of ApNGT but can also contribute to enormous improvement of glycosylation efficiency against both short peptides and proteins. We then employed the most efficient mutant (Q469A) other than the wild-type ApNGT to produce a homogeneous glycoprotein carrying multiple (up to 10) N-glycans, demonstrating that this construct is a promising biocatalyst for potentially addressing the issue of macroheterogeneity in glycoprotein preparation.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-08
    Description: The spike protein N-terminal domains (NTDs) of bovine coronavirus (BCoV) and mouse hepatitis coronavirus (MHV) recognize sugar and protein receptors, respectively, despite their significant sequence homology. We recently determined the crystal structure of MHV NTD complexed with its protein receptor murine carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), which surprisingly revealed a human galectin (galactose-binding lectin) fold in MHV NTD. Here, we have determined at 1.55 Å resolution the crystal structure of BCoV NTD, which also has the human galectin fold. Using mutagenesis, we have located the sugar-binding site in BCoV NTD, which overlaps with the galactose-binding site in human galectins. Using a glycan array screen, we have identified 5-N-acetyl-9-O-acetylneuraminic acid as the preferred sugar substrate for BCoV NTD. Subtle structural differences between BCoV and MHV NTDs, primarily involving different conformations of receptor-binding loops, explain why BCoV NTD does not bind CEACAM1 and why MHV NTD does not bind sugar. These results suggest a successful viral evolution strategy in which coronaviruses stole a galectin from hosts, incorporated it into their spike protein, and evolved it into viral receptor-binding domains with altered sugar specificity in contemporary BCoV or novel protein specificity in contemporary MHV.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-06
    Description: The ataxia telangiectasia-mutated and Rad3-related (ATR) kinase functions as a central node in the DNA damage response signaling network. The mechanisms by which ATR activity is amplified and/or maintained are not understood. Here we demonstrate that BRIT1/microcephalin (MCPH1), a human disease-related protein, is dispensable for the initiation but essential for the amplification of ATR signaling. BRIT1 interacts with and recruits topoisomerase-binding protein 1 (TopBP1), a key activator of ATR signaling, to the sites of DNA damage. Notably, replication stress-induced ataxia telangiectasia-mutated or ATR-dependent BRIT1 phosphorylation at Ser-322 facilitates efficient TopBP1 recruitment. These results reveal a mechanism that ensures the continuation of ATR-initiated DNA damage signaling. Our study uncovers a previously unknown regulatory axis of ATR signaling in maintaining genomic integrity, which may provide mechanistic insights into the perturbation of ATR signaling in human diseases such as neurodevelopmental defects and cancer.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-09-27
    Description: To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the gro...
    Print ISSN: 1755-1307
    Electronic ISSN: 1755-1315
    Topics: Geography , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-31
    Description: In order to simulate the internal flow of centrifugal dredge pump accurately and efficiently, a meshfree simulation method is proposed, which is a method of smooth particle hydrodynamics (SPH). The fluid domain is discretized into Lagrangian particles, the blades, the pump body are discretized as solid particles, the governing equations for fluid, and solid mechanics are transformed into corresponding particle force. When the initial state is started, the particles move and continue to evolve under the action of these forces. The motion parameters of the flow field and solid can be obtained by interpolating the kernel function with the information of particle. The correctness of the control equations and the boundary conditions is verified by simulating the standard examples. The preliminary analysis of using this method to simulate the movement of the two-dimensional centrifugal dredge pump shows that the simulation results are reasonable. It lays theoretical basis for 3-dimens...
    Print ISSN: 1755-1307
    Electronic ISSN: 1755-1315
    Topics: Geography , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...