GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    IWA Publishing ; 2019
    In:  Hydrology Research Vol. 50, No. 6 ( 2019-12-01), p. 1772-1788
    In: Hydrology Research, IWA Publishing, Vol. 50, No. 6 ( 2019-12-01), p. 1772-1788
    Abstract: Possible changes in rainfall extremes in Peninsular Malaysia were assessed in this study using an ensemble of four GCMs of CMIP5. The performance of four bias correction methods was compared, and the most suitable method was used for downscaling of GCM simulated daily rainfall to the spatial resolution (0.25°) of APHRODITE rainfall. The multi-model ensemble (MME) mean of the downscaled rainfall was developed using a random forest regression algorithm. The MME projected rainfall for four RCPs were compared with APHRODITE rainfall for the base year (1961–2005) to assess the annual and seasonal changes in eight extreme rainfall indices. The results showed power transformation as the most suitable bias correction method. The maximum changes in most of the annual and seasonal extreme rainfall indices were observed for RCP8.5 in the last part of this century. The maximum increase was observed for 1-day and 5 consecutive days' rainfall amount for RCP4.5. Spatial distribution of the changes revealed higher increase of the extremes in the northeast region where rainfall extremes are already very high. The increase in rainfall extremes would increase the possibility of frequent hydrological disasters in Peninsular Malaysia.
    Type of Medium: Online Resource
    ISSN: 0029-1277 , 2224-7955
    Language: English
    Publisher: IWA Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 2411122-3
    detail.hit.zdb_id: 2142091-9
    SSG: 21,3
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    IWA Publishing ; 2016
    In:  Water Science and Technology Vol. 73, No. 2 ( 2016-01-28), p. 405-413
    In: Water Science and Technology, IWA Publishing, Vol. 73, No. 2 ( 2016-01-28), p. 405-413
    Abstract: The photo-degradation of nutrients in stormwater in photocatalytic reactor wet detention pond using nano titanium dioxide (TiO2) in concrete was investigated in a scale model as a new stormwater treatment method. Degradation of phosphate and nitrate in the presence of nano-TiO2 under natural ultra violet (UV) from tropical sunlight was monitored for 3 weeks compared with normal ponds. Two types of cement, including ordinary Portland and white cement mixed with TiO2 nano powder, were used as a thin cover to surround the body of the pond. Experiments with and without the catalyst were carried out for comparison and control. Average Anatase diameter of 25 nm and Rutile 100 nm nano particles were applied at three different mixtures of 3, 10 and 30% weight. The amounts of algae available orthophosphate and nitrate, which cause eutrophication in the ponds, were measured during the tests. Results revealed that the utilization of 3% up to 30% weight nano-TiO2 can improve stormwater outflow quality by up to 25% after 48 h and 57% after 3 weeks compared with the control sample in normal conditions with average nutrient (phosphate and nitrate) removal of 4% after 48 h and 10% after 3 weeks.
    Type of Medium: Online Resource
    ISSN: 0273-1223 , 1996-9732
    Language: English
    Publisher: IWA Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 764273-8
    detail.hit.zdb_id: 2024780-1
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    IWA Publishing ; 2020
    In:  Hydrology Research Vol. 51, No. 4 ( 2020-08-01), p. 781-798
    In: Hydrology Research, IWA Publishing, Vol. 51, No. 4 ( 2020-08-01), p. 781-798
    Abstract: Reduction of uncertainty in climate change projections is a major challenge in impact assessment and adaptation planning. General circulation models (GCMs) along with projection scenarios are the major sources of uncertainty in climate change projections. Therefore, the selection of appropriate GCMs for a region can significantly reduce uncertainty in climate projections. In this study, 20 GCMs were statistically evaluated in replicating the spatial pattern of monsoon propagation towards Peninsular Malaysia at annual and seasonal time frames against the 20th Century Reanalysis dataset. The performance evaluation metrics of the GCMs for different time frames were compromised using a state-of-art multi-criteria decision-making approach, compromise programming, for the selection of GCMs. Finally, the selected GCMs were interpolated to 0.25° × 0.25° spatial resolution and bias-corrected using the Asian Precipitation – Highly-Resolved Observational Integration Towards Evaluation (APHRODITE) rainfall as reference data. The results revealed the better performance of BCC-CSM1-1 and HadGEM2-ES in replicating the historical rainfall in Peninsular Malaysia. The bias-corrected projections of selected GCMs revealed a large variation of the mean, standard deviation and 95% percentile of daily rainfall in the study area for two futures, 2020–2059 and 2060–2099 compared to base climate.
    Type of Medium: Online Resource
    ISSN: 0029-1277 , 2224-7955
    Language: English
    Publisher: IWA Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 2411122-3
    detail.hit.zdb_id: 2142091-9
    SSG: 21,3
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Water and Climate Change, IWA Publishing, Vol. 11, No. 4 ( 2020-12-01), p. 1067-1083
    Abstract: This study assesses the water resources and environmental challenges of Lagos mega city, Nigeria, in the context of climate change. Being a commercial hub, the Lagos population has grown rapidly causing an insurmountable water and environmental crisis. In this study, a combined field observation, sample analysis, and interviews were used to assess water challenges. Observed climate, general circulation model (GCM) projections and groundwater data were used to assess water challenges due to climate change. The study revealed that unavailability of sufficient water supply provision in Lagos has overwhelmingly compelled the population to depend on groundwater, which has eventually caused groundwater overdraft. Salt water intrusion and subsidence has occurred due to groundwater overexploitation. High concentrations of heavy metals were observed in wells around a landfill. Climate projections showed a decrease in rainfall of up to 140 mm and an increase in temperature of up to 8 °C. Groundwater storage is projected to decrease after the mid-century due to climate change. Sea level rise will continue until the end of the century. As the water and environmental challenges of Lagos are broad and the changing characteristics of the climate are expected to intensify these as projected, tackling these challenges requires a holistic approach from an integrated water resources management perspective.
    Type of Medium: Online Resource
    ISSN: 2040-2244 , 2408-9354
    Language: English
    Publisher: IWA Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 2552186-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...