GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    INT GLACIOL SOC
    In:  EPIC3Annals of Glaciology, INT GLACIOL SOC, 57(72), pp. 109-117, ISSN: 0260-3055
    Publication Date: 2016-10-20
    Description: Lakes beneath the Antarctic Ice Sheet are known to decrease traction at the ice base and therefore can have a great impact on ice dynamics. However, the total extent of Antarctic subglacial lakes is still unknown. We address this issue by combining modeling and remote-sensing strategies to predict potential lake locations using the general hydraulic potential equation. We are able to reproduce the majority of known lakes, as well as predict the existence of many new and so far undetected potential lakes. To validate our predictions, we analyzed ice-penetrating radar profiles from radio-echo sounding flights acquired over 1994–2013 in Dronning Maud Land, East Antarctica, and this led to the identification of 31 new subglacial lakes. Based on these findings, we estimate the total number of Antarctic subglacial lakes to be ~1300, a factor of three higher than the total number of lakes discovered to date. We estimate that only ~30% of all Antarctic subglacial lakes and ~65% of the total estimated lake-covered area have been discovered, and that lakes account for 0.6% of the Antarctic ice/bed interface.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    INT GLACIOL SOC
    In:  EPIC3Annals of Glaciology, INT GLACIOL SOC, 53(60), pp. 129-135, ISSN: 0260-3055
    Publication Date: 2019-07-17
    Description: Ice flow from the ice sheets to the ocean contains the maximum potential contributing to future eustatic sea level rise. In Antarctica most of the mass fluxes occur via the extended ice shelf regions, covering more than one half of the Antarctic coast line. The most extended ice shelves are the Filchner-Ronne and Ross ice shelves, contributing about 30% to the total mass loss caused by basal melting. Basal melt rates show here small to moderate amplitudes of lower than 0.5 m/a on average. In comparison, the smaller but most vulnerable ice shelves in the Amundsen and Bellingshausen Seas show much higher melt rates (up to 30 ma-1) but overall basal mass loss is comparably small due to the small size of the ice shelves. The pivotal question for both characteristic ice shelf regions, however, is the impact of ocean melting and coevally change in ice-shelf thickness on the flow dynamics of the hinterland ice masses. In theory, ice-shelf back-pressure acts to stabilize the ice sheet, and thus the ice volume stored above sea level. We use the three-dimensional thermomechanical ice flow model RIMBAY to investigate the ice flow in a regularly shaped model domain, including ice sheet, ice shelf, and open-ocean regions. By using melting scenarios for perturbation studies, we find a hysteresis-like behaviour. The experiments show that the system reattains initial state when perturbations are switched off. Average basal melt rates of up to 2 ma-1 as well as spatially variable melting calculated by our 3d ocean model ROMBAX act as basal boundary conditions in time-dependent model studies. Changes in ice volume and grounding-line position are monitored after 1000 years of modelling and reveal mass losses of up to 40 Gta-1.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...