GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-04
    Description: The northern coast of Sicily and its offshore area represent a hinge zone between a sector of the Tyrrhenian Basin, characterized by the strongest crustal thinning, and the sector of the Sicilian belt which has emerged. This hinge zone is part of a wider W-E trending right-lateral shear zone, which has been affecting the Maghrebian Chain units since the Pliocene. Seismological and structural data have been used to evaluate the seismotectonic behavior of the area investigated here. Seismological analysis was performed on a data set of about 2100 seismic events which occurred between January 1988 and October 2002 in the Southern Tyrrhenian Sea. This paper focuses in particular on a set of data relating to the period from 6th September 2002, including both the main shock and about 540 aftershocks of the Palermo seismic sequence. The distribution of the hypocenters revealed the presence of two main seismogenic zones. The events of the easternmost zone may be related to the Ionian lithospheric slab diving beneath the Calabrian Arc. The seismicity associated with the westernmost zone is closely clustered around a sub-horizontal regression plane contained within the thinned Southern Tyrrhenian crust, hence suggesting that this seismogenic zone is strictly connected to the deformation field active within the hinge zone. On the basis of both structural and seismological data, the brittle deformation pattern is characterized by high-angle faults, mainly represented by transcurrent synthetic right-lateral and antithetic left-lateral systems, producing both restraining/uplifting and releasing/subsiding zones which accommodate strains developing in response to the current stress field (characterized by a maximum axis trending NW-SE) which has been active in the area since the Pliocene. The cluster of the seismic sequence which started with the 6th September 2002's main shock is located within the hinge zone. The distribution of the hypocenters relative to this sequence emphasizes the presence of a high-angle NE-SW-oriented deformation belt within which several shear surfaces are considered to be found sub-parallel to that established for the main shock. The kinematics of all these structures is consistent with a compressive right-lateral focal mechanism.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: seismotectonics ; Southern Tyrrhenian Sea ; Northwestern Sicily ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 7044216 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A properly organized seismic network is a valuable tool for monitoring seismic zones and assessing seismic hazards. In this paper we propose a new method (seismic network evaluation through simulation, SNES) to evaluate the performance of hypocenter location of a seismic network. The SNES method gives, as a function of magnitude, hypocentral depth, and confidence level, the spatial distribution of the number of active stations in the location procedure and their relative azimuthal gaps, along with confidence intervals in hypocentral parameters. The application of the SNES method also permits evaluation of the magnitude of completeness (MC), the background noise levels at the stations, and assessment of the appropriateness of the velocity model used in location routine. Italy sits on a tectonically active plate boundary at the convergence of the Eurasian and African lithospheric plates and has a high level of seismicity. In this paper, we apply the SNES method to the Italian National Seismic Network (Rete Sismica Nazionale Centralizzata dell’Istituto Nazionale di Geofisica e Vulcanologia, RSNC– INGV) which has monitored Italian seismicity since the early 1980s, following the destructive 1980 Irpinia earthquake. In recent years, the RSNC–INGV has grown significantly. In fact, in February 2010, it received signals from 305 seismic stations, 258 with wideband three-component sensors. We constructed SNES maps for magnitudes of 1.5, 2, 2.5, and 3, fixing the hypocentral depth at 10 km and the confidence level at 95%. Through the application of the SNES method, we show that the RSNC–INGV provides the best monitoring coverage in the Apennine Mountains with errors that for M 2, are less than 2 and 4 km for epicenter and hypocentral depth, respectively. At M 2.5 this seismic network is capable of constraining earthquake hypocenters to depths of about 150 km for most of the Italian Peninsula. This seismic network provides a threshold of completeness down to M 2 for almost the entire Italian territory.
    Description: Published
    Description: 1213-1232
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: JCR Journal
    Description: reserved
    Keywords: Italian National Seismic Network ; Magnitude of Completeness ; Location Performance ; Seismic Noise ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...