GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2024-02-07
    Description: Iron is a key micronutrient controlling phytoplankton growth in vast regions of the global ocean. Despite its importance, uncertainties remain high regarding external iron source fluxes and internal cycling on a global scale. In this study, we used a global dissolved iron dataset, including GEOTRACES measurements, to constrain source and scavenging fluxes in the marine iron component of a global ocean biogeochemical model. Our model simulations tested three key uncertainties: source inputs of atmospheric soluble iron deposition (varying from 1.4–3.4 Gmol/yr), reductive sedimentary iron release (14–117 Gmol/yr), and compared a variable ligand parameterization to a constant distribution. In each simulation, scavenging rates were tuned to reproduce the observed global mean iron inventory for consistency. The variable ligand parameterization improved the global model-data misfit the most, suggesting that heterotrophic bacteria are an important source of ligands to the ocean. Model simulations containing high source fluxes of atmospheric soluble iron deposition (3.4 Gmol/yr) and reductive sedimentary iron release (114 Gmol/yr) further improved the model most notably in the surface ocean. High scavenging rates were then required to maintain the iron inventory resulting in relatively short surface and global ocean residence times of 0.83 and 7.5 years, respectively. The model simulates a tight spatial coupling between source inputs and scavenging rates, which may be too strong due to underrepresented ligands near source inputs, contributing to large uncertainties when constraining individual fluxes with dissolved iron concentrations. Model biases remain high and are discussed to help improve global marine iron cycle models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-02-07
    Description: An extensive data set of biogenic silica (BSi) fluxes is presented for the Peruvian oxygen minimum zone (OMZ) at 11ºS and 12ºS. Each transect extends from the shelf to the upper slope (∼1000 m) and dissects the permanently anoxic waters between ∼200 – 500m water depth. BSi burial (2100 mmol m‐2 yr‐1) and recycling fluxes (3300 mmol m‐2 yr‐1) were highest on the shelf with mean preservation efficiencies (34±15%) that exceed the global mean of 10 – 20%. BSi preservation was highest on the inner shelf (up to 56%), decreasing to 7% and 12% under anoxic waters and below the OMZ, respectively. The data suggest that the main control on BSi preservation is the rate at which reactive BSi is transported away from undersaturated surface sediments by burial and bioturbation to the underlying saturated sediment layers where BSi dissolution is thermodynamically and/or kinetically inhibited. BSi burial across the entire Peruvian margin between 3ºS to 15ºS and down to 1000m water depth is estimated to be 0.1 – 0.2 Tmol yr‐1; equivalent to 2 – 7% of total burial on continental margins. Existing global data permit a simple relationship between BSi rain rate to the seafloor and the accumulation of unaltered BSi, giving the possibility to reconstruct rain rates and primary production from the sediment archive in addition to benthic Si turnover in global models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...