GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-06-22
    Description: Climate forcing in complex ecosystems can have profound implications for ecosystem sustainability and may thus challenge a precautionary ecosystem management. Climatic influences documented to affect various ecological functions on a global scale, may themselves be observed on quantitative or qualitative scales including regime shifts in complex marine ecosystems. This study investigates the potential climatic impact on the reproduction success of spring-spawning herring (Clupea harengus) in the Western Baltic Sea (WBSS herring). To test for climate effects on reproduction success, the regionally determined and scientifically well-documented spawning grounds of WBSS herring represent an ideal model system. Climate effects on herring reproduction were investigated using two global indices of atmospheric variability and sea surface temperature, represented by the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO), respectively, and the Baltic Sea Index (BSI) which is a regional-scale atmospheric index for the Baltic Sea. Moreover, we combined a traditional approach with modern time series analysis based on a recruitment model connecting parental population components with reproduction success. Generalized transfer functions (ARIMAX models) allowed evaluating the dynamic nature of exogenous climate processes interacting with the endogenous recruitment process. Using different model selection criteria our results reveal that in contrast to NAO and AMO, the BSI shows a significant positive but delayed signal on the annual dynamics of herring recruitment. The westward influence of the Siberian high is considered strongly suppressing the influence of the NAO in this area leading to a higher explanatory power of the BSI reflecting the atmospheric pressure regime on a North-South transect between Oslo, Norway and Szczecin, Poland. We suggest incorporating climate-induced effects into stock and risk assessments and management strategies as part of the EU ecosystem approach to support sustainable herring fisheries in the Western Baltic Sea.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    IFM-GEOMAR
    In:  Alkor-Berichte, AL371 . IFM-GEOMAR, Kiel, Germany, 15 pp.
    Publication Date: 2021-01-28
    Description: Port calls: Saßnitz
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Plankton sampling was conducted in the Baltic to obtain sprat larvae. Their individual drift patterns were back-calculated using a hydrodynamic model. The modelled positions along the individual drift trajectories were subsequently used to provide insight into the environmental conditions experienced by the larvae. Autocorrelation analysis revealed that successive otolith increment widths of individual larvae were not independent. Otolith increment width was then modelled using two different generalized additive model (GAM) analyses (with and without autocorrelation), using environmental variables determined for each modelled individual larval position as explanatory variables. The results indicate that otolith growth was not only influenced by the density of potential prey but was controlled by a number of simultaneously acting environmental factors. The final model, not considering autocorrelation, explained more than 80% of the variance of otolith growth, with larval age as a factor variable showing the strongest significant impact on otolith growth. Otolith growth was further explained by statistically significant ambient environmental factors such as temperature, bottom depth, prey density and turbulence. The GAM analysis, taking autocorrelation into account, explained almost 98% of the variability, with the previous otolith increment showing the strongest significant effect. Larval age as well as ambient temperature and prey abundance also had a significant effect. An alternative approach applied individual-based model (IBM) simulations on larval drift, feeding, growth and survival starting as exogenously feeding larvae at the backcalculated positions. The IBM results revealed optimal growth conditions for more than 97% of the larvae, with a tendency for our IBM to slightly overestimate larval growth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    IFM-GEOMAR
    In:  Alkor-Berichte, AL354 . IFM-GEOMAR, Kiel, Germany, 11 pp.
    Publication Date: 2021-01-28
    Description: Port calls: Saßnitz
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    IFM-GEOMAR
    In:  Alkor-Berichte, AL353 . IFM-GEOMAR, Kiel, Germany, 15 pp.
    Publication Date: 2021-01-28
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-09
    Description: Hydroacoustic single fish detection and corresponding hydrographic measurements were used to study seasonal changes in vertical distribution of adult cod (Gadus morhua) in relation to ambient environmental conditions in the Bornholm Basin, central Baltic Sea. Sampling was conducted in April, June and August covering the years 2006–2009. Vertical distribution of individual fish was resolved from hydroacoustic single-target detection in combination with a fish-tracking algorithm and related to ambient hydrographic conditions. Based on a generalized linear effect model, both salinity and oxygen concentration were identified as key parameters affecting cod vertical distribution. Results also showed a clear seasonal effect with a more shallow distribution as the spawning season progressed and oxygen concentrations in the deep parts of the basin deteriorated. The upper limit of the distributional range was mostly constituted by the halocline and remained rather constant, whereas increasing oxygen depletion in the deep water layers lifted the lower boundary of the vertical distribution, leading to the observed upward shift in the overall distribution pattern. The results presented in this study highlight a significant shortcoming of the assessment survey design established for this species, as the observed shift in vertical distribution is not taken into account, thus introducing a potential bias into a data series used to tune the ICES standard stock assessment of this species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-01-09
    Description: A wind-driven meso-scale pattern of temperature, salinity and oxygen was found along a transect in the northern Bornholm Basin (southern Baltic Sea). Strong winds caused currents along this transect, which shifted cold intermediate water (minimum: 3.6C) towards the south. The transect was surveyed with a towed CTD-system and hydroacoustics in parallel to investigate the distribution of sprat, Sprattus sprattus balticus (Schn.) in relation to the observed meso-scale pattern. In those parts of the transect where the cold intermediate water was observed, sprat were restricted to water layers below the halocline. In other parts of the transect, sprat moved into higher water layers and occupied a wider depth range. The important factor was temperature, which set an upper limit to the vertical sprat distribution. The development of hydrography, as measured in the field, was evaluated with a hydrodynamic model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-07-03
    Description: The Baltic Sea is characterised by a heterogeneous oceanographic environment. The deep water layers forming the habitat of Baltic cod (Gadus morhua callarias L.) are subjected to frequently occurring pronounced anoxic conditions. Adverse oxygen conditions result in physiological stress for organisms living under these conditions. For cod e.g. a direct relationship between oxygen availability and food intake with a decreasing ingestion rate at hypoxia could be revealed. In the present study, the effects of oxygen deficiency on consumption rates were investigated and how these translate to stock size estimates in multi-species models. Based on results from laboratory experiments, a model was fitted to evacuation rates at different oxygen levels and integrated into the existing consumption model for Baltic cod. Individual mean oxygen corrected consumption rates were 0.1–10.9% lower than the uncorrected ones. At the currently low predator stock size, however, the effect of oxygen-reduced consumption on the total amount of eaten prey biomass and thus predation mortalities was only marginal. But should successful management lead to higher cod stock sizes in the future, then total predation mortalities will greatly increase and thus improved precision of these estimates would be valuable for the assessment of prey stocks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-06
    Description: While secondary contact between Mytilus edulis and Mytilus trossulus in North America results in mosaic hybrid zone formation, both species form a hybrid swarm in the Baltic. Despite pervasive gene flow, Baltic Mytilus species maintain substantial genetic and phenotypic differentiation. Exploring mechanisms underlying the contrasting genetic composition in Baltic Mytilus species will allow insights into processes such as speciation or adaptation to extremely low salinity. Previous studies in the Baltic indicated that only weak interspecific reproductive barriers exist and discussed the putative role of adaptation to environmental conditions. Using a combination of hydrodynamic modelling and multilocus genotyping, we investigate how oceanographic conditions influence passive larval dispersal and hybrid swarm formation in the Baltic. By combining our analyses with previous knowledge, we show a genetic transition of Baltic Mytilus species along longitude 12°-13°E, that is a virtual line between Malmö (Sweden) and Stralsund (Germany). Although larval transport only occurs over short distances (10–30 km), limited larval dispersal could not explain the position of this genetic transition zone. Instead, the genetic transition zone is located at the area of maximum salinity change (15–10 psu). Thus, we argue that selection results in weak reproductive barriers and local adaptation. This scenario could maintain genetic and phenotypic differences between Baltic Mytilus species despite pervasive introgressive hybridization.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: Genetic data have great potential for improving fisheries management by identifying the fundamental management units—that is, the biological populations—and their mixing. However, so far, the number of practical cases of marine fisheries management using genetics has been limited. Here, we used Atlantic cod in the Baltic Sea to demonstrate the applicability of genetics to a complex management scenario involving mixing of two genetically divergent populations. Specifically, we addressed several assumptions used in the current assessment of the two populations. Through analysis of 483 single nucleotide polymorphisms (SNPs) distributed across the Atlantic cod genome, we confirmed that a model of mechanical mixing, rather than hybridization and introgression, best explained the pattern of genetic differentiation. Thus, the fishery is best monitored as a mixed-stock fishery. Next, we developed a targeted panel of 39 SNPs with high statistical power for identifying population of origin and analyzed more than 2,000 tissue samples collected between 2011 and 2015 as well as 260 otoliths collected in 2003/2004. These data provided high spatial resolution and allowed us to investigate geographical trends in mixing, to compare patterns for different life stages and to investigate temporal trends in mixing. We found similar geographical trends for the two time points represented by tissue and otolith samples and that a recently implemented geographical management separation of the two populations provided a relatively close match to their distributions. In contrast to the current assumption, we found that patterns of mixing differed between juveniles and adults, a signal likely linked to the different reproductive dynamics of the two populations. Collectively, our data confirm that genetics is an operational tool for complex fisheries management applications. We recommend focussing on developing population assessment models and fisheries management frameworks to capitalize fully on the additional information offered by genetically assisted fisheries monitoring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...