GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Hindawi Limited ; 2022
    In:  Computational and Mathematical Methods in Medicine Vol. 2022 ( 2022-1-20), p. 1-17
    In: Computational and Mathematical Methods in Medicine, Hindawi Limited, Vol. 2022 ( 2022-1-20), p. 1-17
    Abstract: Epileptic seizures occur due to brain abnormalities that can indirectly affect patient’s health. It occurs abruptly without any symptoms and thus increases the mortality rate of humans. Almost 1% of world’s population suffers from epileptic seizures. Prediction of seizures before the beginning of onset is beneficial for preventing seizures by medication. Nowadays, modern computational tools, machine learning, and deep learning methods have been used to predict seizures using EEG. However, EEG signals may get corrupted with background noise, and artifacts such as eye blinks and physical movements of muscles may lead to “pops” in the signal, resulting in electrical interference, which is cumbersome to detect through visual inspection for longer duration recordings. These limitations in automatic detection of interictal spikes and epileptic seizures are preferred, which is an essential tool for examining and scrutinizing the EEG recording more precisely. These restrictions bring our attention to present a review of automated schemes that will help neurologists categorize epileptic and nonepileptic signals. While preparing this review paper, it is observed that feature selection and classification are the main challenges in epilepsy prediction algorithms. This paper presents various techniques depending on various features and classifiers over the last few years. The methods presented will give a detailed understanding and ideas about seizure prediction and future research directions.
    Type of Medium: Online Resource
    ISSN: 1748-6718 , 1748-670X
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2256917-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Hindawi Limited ; 2022
    In:  Computational Intelligence and Neuroscience Vol. 2022 ( 2022-1-10), p. 1-22
    In: Computational Intelligence and Neuroscience, Hindawi Limited, Vol. 2022 ( 2022-1-10), p. 1-22
    Abstract: Chronic illnesses like chronic respiratory disease, cancer, heart disease, and diabetes are threats to humans around the world. Among them, heart disease with disparate features or symptoms complicates diagnosis. Because of the emergence of smart wearable gadgets, fog computing and “Internet of Things” (IoT) solutions have become necessary for diagnosis. The proposed model integrates Edge-Fog-Cloud computing for the accurate and fast delivery of outcomes. The hardware components collect data from different patients. The heart feature extraction from signals is done to get significant features. Furthermore, the feature extraction of other attributes is also gathered. All these features are gathered and subjected to the diagnostic system using an Optimized Cascaded Convolution Neural Network (CCNN). Here, the hyperparameters of CCNN are optimized by the Galactic Swarm Optimization (GSO). Through the performance analysis, the precision of the suggested GSO-CCNN is 3.7%, 3.7%, 3.6%, 7.6%, 67.9%, 48.4%, 33%, 10.9%, and 7.6% more advanced than PSO-CCNN, GWO-CCNN, WOA-CCNN, DHOA-CCNN, DNN, RNN, LSTM, CNN, and CCNN, respectively. Thus, the comparative analysis of the suggested system ensures its efficiency over the conventional models.
    Type of Medium: Online Resource
    ISSN: 1687-5273 , 1687-5265
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2388208-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Hindawi Limited ; 2022
    In:  Computational Intelligence and Neuroscience Vol. 2022 ( 2022-1-17), p. 1-10
    In: Computational Intelligence and Neuroscience, Hindawi Limited, Vol. 2022 ( 2022-1-17), p. 1-10
    Abstract: Understanding the situation is a critical component of any self-driving system. Accurate real-time visual signal processing to create pixelwise classed pictures, also known as semantic segmentation, is critical for scenario comprehension and subsequent acceptance of this new technology. Due to the intricate interaction between pixels in each frame of the received camera data, such efficiency in terms of processing time and accuracy could not be achieved prior to recent advances in deep learning algorithms. We present an effective approach for semantic segmentation for self-driving automobiles in this study. We combine deep learning architectures like convolutional neural networks and autoencoders, as well as cutting-edge approaches like feature pyramid networks and bottleneck residual blocks, to develop our model. The CamVid dataset, which has undergone considerable data augmentation, is utilised to train and test our model. To validate the suggested model, we compare the acquired findings to various baseline models reported in the literature.
    Type of Medium: Online Resource
    ISSN: 1687-5273 , 1687-5265
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2388208-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...