GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hindawi Limited  (4)
  • 1
    Online Resource
    Online Resource
    Hindawi Limited ; 2020
    In:  BioMed Research International Vol. 2020 ( 2020-06-04), p. 1-9
    In: BioMed Research International, Hindawi Limited, Vol. 2020 ( 2020-06-04), p. 1-9
    Abstract: Background . The incidence of sepsis has been increasing in recent years. The molecular mechanism of different pathogenic sepsis remains elusive, and biomarkers of sepsis against different pathogens are still lacking. Methods . The microarray data of bacterial sepsis, fungal sepsis, and mock-treated samples were applied to perform differentially expressed gene (DEG) analysis to identify a bacterial sepsis-specific gene set and a fungal sepsis-specific gene set. Functional enrichment analysis was used to explore the body’s response to bacterial sepsis and fungal sepsis. Gene set variation analysis (GSVA) was used to score individual samples against the two pathogen-specific gene sets, and each sample gets a GSVA index. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value of sepsis. An independent data set was used to validate the bacterial sepsis-specific GSVA index. Results . The genes differentially expressed only in bacterial sepsis and the genes differentially expressed only in fungal sepsis were significantly involved in different biological processes (BPs) and pathways. This indicated that the body’s responses to fungal sepsis and bacterial sepsis are varied. Twenty-two genes were identified as bacterial sepsis-specific genes and upregulated in bacterial sepsis, and 23 genes were identified as fungal sepsis-specific genes and upregulated in fungal sepsis. ROC curve analysis showed that both of the two pathogen sepsis-specific GSVA indexes may be a reliable biomarker for corresponding pathogen-induced sepsis ( AUC = 1.000 ), while the mRNA of CALCA (also known as PCT) have a poor diagnostic value with AUC = 0.512 in bacterial sepsis and AUC = 0.705 in fungi sepsis. In addition, the AUC of the bacterial sepsis-specific GSVA index in the independent data set was 0.762. Conclusion . We proposed a bacterial sepsis-specific gene set and a fungal sepsis-specific gene set; the bacterial sepsis GSVA index may be a reliable biomarker for bacterial sepsis.
    Type of Medium: Online Resource
    ISSN: 2314-6133 , 2314-6141
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2020
    detail.hit.zdb_id: 2698540-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Advanced Transportation, Hindawi Limited, Vol. 2022 ( 2022-5-21), p. 1-16
    Abstract: Lane changing behavior has a significant impact on traffic efficiency and may lead to traffic delays or even accidents. It is important to plan a safe and efficient lane-changing trajectory that coordinates with the surrounding environment. Most conventional lane-changing models need to establish and solve constrained optimization models during the whole process, while reinforcement learning can just take the current state as input and directly output actions to vehicles. This study develops a lane-changing model using the deep deterministic policy gradient method, which can simultaneously control the lateral and longitudinal motions of the vehicle. To optimize its performance, a reward function is properly designed by combining safety, efficiency, gap, headway, and comfort features. To avoid collisions, a safety modification model is developed to check and correct acceleration at every time step. The driving trajectory data of 1169 lane-changing scenarios extracted from the Next Generation Simulation (NGSIM) dataset are used to train and test the model. The proposed model can quickly converge in training phase. Testing results show it can complete safe and efficient lane changing in different lane-changing scenarios with both shorter time headway and lane-changing duration than human drivers. Compared with the conventional dynamic lane-changing trajectory planning model, our model can reduce collision risk. It is also evaluated in automated and nonautomated mixed traffic in SUMO. Simulation results show that the proposed model also has a positive effect on the average speed of overall traffic flow.
    Type of Medium: Online Resource
    ISSN: 2042-3195 , 0197-6729
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2553327-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Hindawi Limited ; 2022
    In:  Computational Intelligence and Neuroscience Vol. 2022 ( 2022-8-1), p. 1-9
    In: Computational Intelligence and Neuroscience, Hindawi Limited, Vol. 2022 ( 2022-8-1), p. 1-9
    Abstract: To estimate the accurate depth from a single image, we proposed a novel and effective depth estimation architecture to solve the problem of missing and blurred contours of small objects in the depth map. The architecture consists of Extremely Effective Spatial Pyramid modules (EESP) and Pixel Shuffle upsampling Decoders (PSD). The results of this study show that multilevel information and the upsampling method in the decoders are essential for recovering the accurate depth map. Through the model we proposed, competitive performance compared with state-of-the-art methods in terms of reconstruction of object boundaries and the detection rate of small objects has been demonstrated. Our approach has wide applications in higher-level visual tasks, including 3D reconstruction and autonomous driving.
    Type of Medium: Online Resource
    ISSN: 1687-5273 , 1687-5265
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2388208-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Hindawi Limited ; 2017
    In:  BioMed Research International Vol. 2017 ( 2017), p. 1-6
    In: BioMed Research International, Hindawi Limited, Vol. 2017 ( 2017), p. 1-6
    Abstract: Birt-Hogg-Dube syndrome (BHD, OMIM#135150) is a rare disease in clinic; it is characterized by skin fibrofolliculomas, pulmonary cysts with an increased risk of recurrent pneumothorax, renal cysts, and renal neoplasms. Previous studies have demonstrated that variants in folliculin ( FLCN , NM_144997) are mainly responsible for this disease. In this research, we enrolled two BHD families and applied direct sequencing of FLCN to explore the genetic lesions in them. Two FLCN mutations were identified: one is a novel deletion variant (c.668delA/p.N223TfsX19), while the other is a previously reported insertion mutation (c.1579_1580insA/p.R527QfsX75). And the pathogenicity of both variants was confirmed by cosegregation assay. Bioinformatics analysis showed that c.668delA may lead to functional haploinsufficiency of FLCN because mRNA carrying this mutation exhibits a faster degradation rate comparing to the wild type. Real-time qPCR also confirmed that the mRNA level of FLCN expression in the proband was decreased significantly compared with the controls, which may disrupt the mTOR pathway and lead to BHD. The insertion mutation (c.1579_1580insA) was predicted to cause a prolonged amino acid sequence of FLCN. The present identification of two mutations not only further supports the important role of tumor suppressor FLCN in BHD and primary spontaneous pneumothorax, but also expands the spectrum of FLCN mutations and will provide insight into genetic diagnosis and counseling of families with BHD.
    Type of Medium: Online Resource
    ISSN: 2314-6133 , 2314-6141
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2017
    detail.hit.zdb_id: 2698540-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...