GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hindawi Limited  (238)
  • 1
    In: Oxidative Medicine and Cellular Longevity, Hindawi Limited, Vol. 2019 ( 2019-11-30), p. 1-18
    Abstract: Diabetic cardiomyopathy (DCM) is one of the common cardiovascular complications in patients with diabetes. Accumulating evidence has demonstrated that DCM is thoroughly related to mitochondrial energy impairment and increases the generation of reactive oxygen species (ROS). Therefore, an ongoing study is developing strategies to protect cardiac mitochondria from diabetic complications, especially from hyperglycemia. Phosphocreatine (PCr) plays a major metabolic role in cardiac muscular cells including intracellular concentration of ATP which affects the activity of the myocardium. We hypothesized that PCr might improve oxidative phosphorylation and electron transport capacity in mitochondria impaired by hyperglycemia in vivo and in vitro. Also, we aimed to evaluate the protective effect of PCr against DCM through the JAK2/STAT3 signaling pathway. The mitochondrial respiratory capacity from rats and H9C2 cells was measured by high-resolution respirometry (HRR). Expressions of proteins Bax, Bcl-2, caspase 3, caspase 9, cleaved caspase 3, and cleaved caspase 9, as well as JAK2/STAT3 signaling pathways, were determined by western blotting. ROS generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Type 1 diabetes mellitus was induced in Wistar male rats by a single intraperitoneal injection of streptozotocin (STZ) (80 mg/kg body weight). Our results revealed that PCr possessed protective effects against DCM injury by improving the mitochondrial bioenergetics and by positively exerting protective effects against DCM in vivo and in vitro, not only improving diabetes symptom, resulting in changes of cardiac tissue using hematoxylin and eosin (H & E) stain, but also ameliorating biochemical changes. Moreover, PCr increased Bcl-2, caspase 3, and caspase 9 protein expressions and decreased Bax, cleaved caspase 3, and cleaved caspase 9 expressions as well as the JAK2/STAT3 signaling pathway. In conclusion, PCr improves mitochondrial functions and exerts an antiapoptotic effect in vivo and in vitro exposed to oxidative stress by hyperglycemia through the JAK2/STAT3 signaling pathway. Our findings suggest that PCr medication is a possible therapeutic strategy for cardioprotection.
    Type of Medium: Online Resource
    ISSN: 1942-0900 , 1942-0994
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2019
    detail.hit.zdb_id: 2455981-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Oxidative Medicine and Cellular Longevity, Hindawi Limited, Vol. 2022 ( 2022-6-13), p. 1-14
    Abstract: Radiotherapy has been used for decades in the treatment of liver cancer. We previously found that adiponectin receptor (AdipoR1) is a prognostic biomarker for hepatoma carcinoma (HCC) after stereotactic body radiation therapy (SBRT) and blocking AdipoR1 enhances radiation sensitivity in hepatoma carcinoma cells. In the current study, we aimed to elucidate the roles of AdipoR1 in ionizing radiation- (IR-) induced radiosensitivity by activating ferroptosis pathway in HCC cells. We found that IR upregulated the expression of AdipoR1 and furthermore promoted the protein stability of transcription factor Nrf2, Nrf2 binded to the xCT promoter and increased xCT transcription and expression, and this directly contributed to the protective function in the early stage of radiation in HCC cells. AdipoR1 knockdown significantly inhibited expression of Nrf2 and xCT and, furthermore, increased both IR- and erastin-induced ferroptosis, which could be abolished by the rescue of Nrf2 and xCT. For the first time, we found that radiation-induced ferroptosis was mediated by AdipoR1-Nrf2-xCT pathway in HCC cells. These results provide new insights to the development and application of novel therapeutic strategies for hepatoma carcinoma.
    Type of Medium: Online Resource
    ISSN: 1942-0994 , 1942-0900
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2455981-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Evidence-Based Complementary and Alternative Medicine, Hindawi Limited, Vol. 2022 ( 2022-12-13), p. 1-13
    Abstract: Radix Astragali is widely used in the traditional Chinese medicine with the effect of antiaging. The purpose of this study is to explore the main active ingredients and targets of Radix Astragali against renal aging by network pharmacology and further to verify the mechanism of the main active ingredients in vitro. TCMSP, ETCM, and TCMID databases were used to screen active ingredients of Radix Astragali. Targets of active ingredients were predicted using BATMAN-TCM and cross validated using kidney aging-related genes obtained from GeneCards and NCBI database. Pathways enrichment and protein-protein interaction (PPI) analysis were performed on core targets. Additionally, a pharmacological network was constructed based on the active ingredients-targets-pathways. HK-2 cell was treated with D-galactose to generate a cell model of senescence. CCK-8 and β-galactosidase were used to detect the effect of Radix Astragali active components on cell proliferation and aging. ELISA was used to detect the expression of senescence-associated secreted protein (TGF-β and IL-6) in the cell culture supernatant. Western blot was used to detect the expression of key proteins in the SIRT1/ p 53 pathway. Five active ingredients (Astragaloside I, II, III, IV and choline) were identified from Radix Astragali, and all these active ingredients target a total of 128 genes. Enrichment analysis showed these genes were implicated in 153 KEGG pathways, including the p 53 , FoxO, and AMPK pathway. 117 proteins and 572 interactions were found in PPI network. TP53 and SIRT1 were two hub genes in PPI network, which interacted with each other. The pharmacological network showed that the five main active ingredients target on some coincident genes, including TP53 and SIRT1. These targeted genes were involved in the p53, FoxO, and AMPK pathway. Proliferation of HK-2 cells was increased by Astragaloside IV treatment compared with that of the D-Gal treatment group. However, the proliferation of the SA-β-gal positive cells were inhibited. The expression of TGF-β and IL-6 in the D-Gal group was higher than that in the normal group, and the treatment of Astragaloside IV could significantly reduce the expression of TGF-β and IL-6. The expression of SIRT1 in the Astragaloside IV group was higher than that in the D-Gal group. However, the expression of p 53 and p 21 was less in the Astragaloside IV group than that in the D-Gal group. This study suggested that Astragaloside IV is an important active ingredient of Radix Astragali in the treatment of kidney aging via the SITR1- p 53 pathway.
    Type of Medium: Online Resource
    ISSN: 1741-4288 , 1741-427X
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2148302-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Oxidative Medicine and Cellular Longevity, Hindawi Limited, Vol. 2021 ( 2021-2-4), p. 1-11
    Abstract: Exposure to total body irradiation (TBI) causes dose- and tissue-specific lethality. However, there are few effective and nontoxic radiation countermeasures for the radiation injury. In the current study, mice were pretreated with a traditional antimicrobial agent, FZD, before TBI; the protective effects of FZD on radiation injury were evaluated by using parameters such as the spleen index and thymus index, immunohistochemical staining of intestinal tissue, and frequency of micronuclei in polychromatophilic erythrocytes of bone marrow. The intestinal epithelial cell line IEC-6 was used to investigate the underlying mechanisms. Our results indicated that FZD administration significantly improved the survival of lethal dose-irradiated mice, decreased the number of micronuclei, upregulated the number of leukocytes and immune organ indices, and restored intestinal integrity in mice after TBI. TUNEL and western blot showed that FZD protected intestinal tissue by downregulating radiation-induced apoptosis and autophagy. Meanwhile, FZD protected IEC-6 cells from radiation-induced cell death by inhibiting apoptosis and autophagy. To sum up, FZD protected against radiation-induced cell death both in vitro and in vivo through antiapoptosis and antiautophagy mechanisms.
    Type of Medium: Online Resource
    ISSN: 1942-0994 , 1942-0900
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2455981-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: BioMed Research International, Hindawi Limited, Vol. 2021 ( 2021-7-2), p. 1-14
    Abstract: Nucleus pulposus (NP) is the core substance to maintain the homeostasis of intervertebral disc and stability of biomechanics. The insufficient supply of nutrition (especially glucose) is an important factor that leads to the degeneration of NP cells. circRNAs play an important role in the process of intervertebral disc degeneration (IDD) by regulating the functions of NP cells. However, glucose deprivation-related circRNAs and their functions in IDD have not been reported. In this study, the differentially expressed circRNAs in NP cells after 0, 6, 12, and 24 h of glucose deprivation culture were detected by a microarray assay. Besides, time series clustering analysis by STEM software obtained the differentially up- and downregulated circRNAs during glucose deficiency. Then, the main functions and pathways of up- and downregulated circRNAs were predicted by the functional enrichment analysis. By constructing the circRNA-miRNA regulatory network, the potential mechanisms of the most differentially expressed circRNAs were predicted. In addition, according to in vitro validation, circ_0075062 was upregulated in degenerating NP tissues and glucose deprivation-induced NP cell degeneration. Based on Sanger sequencing and RNase tolerance assay, circ_0075062 was the circular transcript. Interfering with circ_0075062 expression could potentially alleviate the imbalance of extracellular matrix (ECM) synthesis and degradation in the NP cells induced by glucose deprivation. Together, these findings help us gain a comprehensive understanding of the underlying mechanisms of IDD, and circ_0075062 may be a promising therapeutic target of IDD.
    Type of Medium: Online Resource
    ISSN: 2314-6141 , 2314-6133
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2698540-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Contrast Media & Molecular Imaging, Hindawi Limited, Vol. 2022 ( 2022-5-24), p. 1-6
    Abstract: Objective. To explore the effect of 3D Slicer preoperative planning and intraoperative guidance with mobile phone virtual reality (VR) technology on brain glioma surgery. Methods. By means of retrospective study, the data of 77 brain glioma patients treated in the neurosurgery departments at The Second Affiliated Hospital of Wannan Medical College and Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from January 2015 to January 2022 were analyzed, and the patients were divided into the experimental group (EG, n = 38) and the control group (CG, n = 39) according to the surgical modalities. Before surgery, all patients received positron emission tomography-computed tomography (PET/CT) scanning and magnetic resonance imaging (MRI) examination. For patients in EG, the DICOM format images acquired from PET-CT and MRI examinations were imported with the 3D Slicer software for 3D visual fusion reconstruction, acquiring VR images, and developing detailed preoperative planning. Then, the reconstructed images were imported into the Sina software on a mobile phone, and the surgery was performed with the assistance of VR technology; for patients in CG, traditional 2D images were used for tumor contour drawing by the subjective visual method, and the craniotomy was performed under a traditional microscope. Patients’ surgery indicators and Karnofsky Performance Scale (KPS) scores were compared between the two groups. Results. The number of cases with total resection, rate of total resection, hospital stay after surgery, and surgery time were significantly better in EG than in CG ( P 〈 0.05 ); after treatment, the KPS score was significantly higher in EG than in CG (75.66 ± 4.01 vs 65.36 ± 5.23, P 〈 0.001 ). Conclusion. Combining 3D Slicer preoperative planning with intraoperative mobile phone VR technology can promote the accuracy of brain glioma surgery, which is conducive to effectively removing tumors while protecting patients’ neural function.
    Type of Medium: Online Resource
    ISSN: 1555-4317 , 1555-4309
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2222967-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Hindawi Limited ; 2022
    In:  Journal of Healthcare Engineering Vol. 2022 ( 2022-8-29), p. 1-17
    In: Journal of Healthcare Engineering, Hindawi Limited, Vol. 2022 ( 2022-8-29), p. 1-17
    Abstract: Magnetic resonance image has important application value in disease diagnosis. Due to the particularity of its imaging mechanism, the resolution of hardware imaging needs to be improved by increasing radiation intensity and radiation time. Excess radiation can cause the body to overheat and, in severe cases, inactivate the protein. This problem is expected to be solved by the image superresolution method based on joint dictionary learning, which has good superresolution performance. In the process of dictionary learning, the loss function will directly affect the dictionary performance. The general method only uses the cascade error as the optimization function in dictionary training, and the method does not consider the individual reconstruction error of high- and low-resolution image dictionary. In order to solve the above problem, In this paper, the loss function of dictionary learning is optimized. While ensuring that the coefficients are sufficiently sparse, the high- and low-resolution dictionaries are trained separately to reduce the error generated by the joint high- and low-resolution dictionary block pair and increase the high-resolution reconstruction error. Experiments on neck and ankle MR images show that the proposed algorithm has better superresolution reconstruction performance on ×2 and ×4 compared with bicubic interpolation, nearest neighbor, and original dictionary learning algorithms.
    Type of Medium: Online Resource
    ISSN: 2040-2309 , 2040-2295
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2545054-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Transboundary and Emerging Diseases, Hindawi Limited, Vol. 66, No. 3 ( 2019-05), p. 1395-1398
    Type of Medium: Online Resource
    ISSN: 1865-1674 , 1865-1682
    URL: Issue
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2019
    detail.hit.zdb_id: 2414822-2
    SSG: 22
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Hindawi Limited ; 2021
    In:  Journal of Sensors Vol. 2021 ( 2021-10-16), p. 1-7
    In: Journal of Sensors, Hindawi Limited, Vol. 2021 ( 2021-10-16), p. 1-7
    Abstract: With the rise and rapid development of short video sharing websites, the number of short videos on the Internet has been growing explosively. The organization and classification of short videos have become the basis for the effective use of short videos, which is also a problem faced by major short video platforms. Aiming at the characteristics of complex short video content categories and rich extended text information, this paper uses methods in the text classification field to solve the short video classification problem. Compared with the traditional way of classifying and understanding short video key frames, this method has the characteristics of lower computational cost, more accurate classification results, and easier application. This paper proposes a text classification model based on the attention mechanism of multitext embedding short video extension. The experiment first uses the training language model Albert to extract sentence-level vectors and then uses the attention mechanism to study the text information in various short video extensions in a short video classification weight factor. And this research applied Google’s unsupervised data augmentation (UDA) method based on unsupervised data, creatively combining it with the Chinese knowledge graph, and realized TF-IDF word replacement. During the training process, we introduced a large amount of unlabeled data, which significantly improved the accuracy of model classification. The final series of related experiments is aimed at comparing with the existing short video title classification methods, classification methods based on video key frames, and hybrid methods, and proving that the method proposed in this article is more accurate and robust on the test set.
    Type of Medium: Online Resource
    ISSN: 1687-7268 , 1687-725X
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2397931-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Hindawi Limited ; 2022
    In:  Oxidative Medicine and Cellular Longevity Vol. 2022 ( 2022-11-4), p. 1-11
    In: Oxidative Medicine and Cellular Longevity, Hindawi Limited, Vol. 2022 ( 2022-11-4), p. 1-11
    Abstract: The liver is a highly metabolic organ and plays a crucial role in the transportation, storage, and/or detoxication of xenobiotics. Liver damage induced by xenobiotics (e.g., heavy metal, endocrine disrupting chemicals, Chinese herbal medicine, or nanoparticles) has become a pivotal reason for liver diseases, leading to great clinical challenge and much attention for the past decades. Given that endoplasmic reticulum (ER) is the prominent organelle involved in hepatic metabolism, ER dysfunction, namely, ER stress, is clearly observed in various liver diseases. In response to ER stress, a conserved adaptive signaling pathway known as unfolded protein response (UPR) is activated to restore ER homeostasis. However, the prolonged ER stress with UPR eventually leads to the death of hepatocytes, which is a pathogenic event in many hepatic diseases. Therefore, analyzing the perturbation in the activation or inhibition of ER stress and the UPR signaling pathway is likely an effective marker for investigating the molecular mechanisms behind the toxic effects of xenobiotics on the liver. We review the role of ER stress in hepatic diseases and xenobiotic-induced hepatotoxicity, which not only provides a theoretical basis for further understanding the pathogenesis of liver diseases and the mechanisms of hepatotoxicity induced by xenobiotics but also presents a potential target for the prevention and treatment of xenobiotic-related liver diseases.
    Type of Medium: Online Resource
    ISSN: 1942-0994 , 1942-0900
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2455981-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...