GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hindawi Limited  (2)
Material
Publisher
  • Hindawi Limited  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Hindawi Limited ; 2020
    In:  Advances in Civil Engineering Vol. 2020 ( 2020-12-27), p. 1-11
    In: Advances in Civil Engineering, Hindawi Limited, Vol. 2020 ( 2020-12-27), p. 1-11
    Abstract: With the concept of smart geogrid coming out, many scholars have built optical fiber into the geogrid to form a kind of smart geogrid material with self-sensing function of structural deformation. It can not only reinforce the parts with potential safety hazards, but also have the functions of safety monitoring, intelligent prevention, and control of engineering disasters, which is of great significance for ensuring the safety of tunnel construction and improving the tunnel monitoring methods. Based on predecessors’ research on smart geogrid tensile calibration experiment and sensor method simulation and experimental verification, this paper analyzes the smart geogrid and the tunnel surrounding rock as a whole, to study the deformation coordination mechanism between the geogrid material and the tunnel surrounding rock. Referring to the relevant engineering practice case, through finite element numerical simulation, the optimal layout of smart geogrid material was explored, and the principle of discrete curvature reconstruction curve sensing of smart geogrid was optimized by simulating the working conditions of different construction methods and supporting conditions, in order to provide a theoretical basis for the application of smart geogrid material in practical tunnel engineering.
    Type of Medium: Online Resource
    ISSN: 1687-8094 , 1687-8086
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2020
    detail.hit.zdb_id: 2449760-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Hindawi Limited ; 2021
    In:  Advances in Civil Engineering Vol. 2021 ( 2021-12-7), p. 1-12
    In: Advances in Civil Engineering, Hindawi Limited, Vol. 2021 ( 2021-12-7), p. 1-12
    Abstract: Based on the Hong Kong-Zhuhai-Macao project, considering the fluid-structure interaction and soil-structure interaction, the seismic response of a sea-crossing continuous girder bridge is analyzed. Three-dimensional nonlinear numerical bridge model is developed, in which the hydrodynamic force is represented by added mass and pile-soil interaction is represented by p-y elements. Meanwhile, stratification of soil is considered in the free field analysis. Through the comparison of responses of the bridge cases, the effects of earthquake-induced hydrodynamic force and pile-soil interaction are studied. For the influence of hydrodynamic force, the results show that it is relatively slight as compared with pile-soil interaction; moreover pile foundation is more sensitive to it than other bridge components. The influence of pile-soil interaction is relatively significant. When both of the interactions are considered, the influence is not a simple superposition of acting alone, so it is recommended to consider both factors in dynamic analysis.
    Type of Medium: Online Resource
    ISSN: 1687-8094 , 1687-8086
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2449760-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...