GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hindawi Limited  (2)
Material
Publisher
  • Hindawi Limited  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Hindawi Limited ; 2018
    In:  Journal of Immunology Research Vol. 2018 ( 2018-12-19), p. 1-9
    In: Journal of Immunology Research, Hindawi Limited, Vol. 2018 ( 2018-12-19), p. 1-9
    Abstract: Recently, increasing data show that immunotherapy could be a powerful weapon against cancers. Comparing to the traditional surgery, chemotherapy or radiotherapy, immunotherapy more specifically targets cancer cells, giving rise to the opportunities to the patients to have higher response rates and better quality of life and even to cure the disease. Cancer vaccines could be designed to target tumor-associated antigens (TAAs), cancer germline antigens, virus-associated antigens, or tumor-specific antigens (TSAs), which are also called neoantigens. The cancer vaccines could be cell-based (e.g., dendritic cell vaccine provenge (sipuleucel-T) targeting prostatic acid phosphatase for metastatic prostate cancer), peptide/protein-based, or gene- (DNA/RNA) based, with the different kinds of adjuvants. Neoantigens are tumor-specific and could be presented by MHC molecules and recognized by T lymphocytes, serving the ideal immune targets to increase the therapeutic specificity and decrease the risk of nonspecific autoimmunity. By targeting the shared antigens and private epitopes, the cancer vaccine has potential to treat the disease. Accordingly, personalized neoantigen-based immunotherapies are emerging. In this article, we review the literature and evidence of the advantage and application of cancer vaccine. We summarize the recent clinical trials of neoantigen cancer vaccines which were designed according to the patients’ personal mutanome. With the rapid development of personalized immunotherapy, it is believed that tumors could be efficiently controlled and become curable in the new era of precision medicine.
    Type of Medium: Online Resource
    ISSN: 2314-8861 , 2314-7156
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2018
    detail.hit.zdb_id: 2817541-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Emergency Medicine International, Hindawi Limited, Vol. 2022 ( 2022-1-29), p. 1-13
    Abstract: Emergency care is a critical area of medicine whose outcomes are influenced by the time, availability, and accuracy of contextual information. The success of critical or emergency care is determined by the quality and accuracy of the information received during the emergency call and the data collected during emergency transportation. The Internet of Things (IoT) consists of many smart devices and components that communicate via their connection to the Internet, which is used to collect data with sensors that obtain personal health parameters. In the past, most health measurement systems were based on a single dedicated orientation, and few systems had multiple devices on the same platform. In addition to traditional health measurement technologies, most such systems use centralized data transmission, which means that health measurement data have become the exclusive intellectual asset of the system developer. Therefore, this study develops an IoT-based message-broker system that is deployed and demonstrated for five health devices: blood oxygen, blood pressure, forehead temperature, body temperature, and body weight sensors. A central controller accessed by radio-frequency identification (RFID) collects clients’ health profiles on the cloud platform. All collected data can be quickly shared, analyzed, and visualized, and the health devices can be changed, added to, and removed reliably when the requirements change. Additionally, following the message queuing telemetry transport (MQTT) protocol, all devices can communicate with each other and be integrated into a higher-level health measurement standard (such as blood pressure plus weight or body temperature plus blood oxygen). We implement a smart healthcare monitoring system (SHMS) and verify its reliability. We use MQTT to establish an open communication format that other organizations can follow to perform individual patient vital sign monitoring in potential applications. The robustness and flexibility of this research can be verified through the addition of other systems. Through this structure, more large-scale health detection devices can be integrated into the method proposed in this research in the future. Personal RFID or health insurance cards can be used for personal services or in medical institutions, and the data can easily be shared through the mechanism of this research. Such information sharing will enable the utilization of medical resources to be maximized.
    Type of Medium: Online Resource
    ISSN: 2090-2859 , 2090-2840
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2596429-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...