GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Global Health, Hindawi Limited, Vol. 2023 ( 2023-6-12), p. 1-11
    Abstract: Enterococci are among the most common opportunistic hospital pathogens. This study used whole-genome sequencing (WGS) and bioinformatics to determine the antibiotic resistome, mobile genetic elements, clone and phylogenetic relationship of Enterococcus faecalis isolated from hospital environments in South Africa. This study was carried out from September to November 2017. Isolates were recovered from 11 frequently touched sites by patients and healthcare workers in different wards at 4 levels of healthcare (A, B, C, and D) in Durban, South Africa. Out of the 245 identified E. faecalis isolates, 38 isolates underwent whole-genome sequencing (WGS) on the Illumina MiSeq platform, following microbial identification and antibiotic susceptibility tests. The tet(M) (31/38, 82%) and erm(C) (16/38, 42%) genes were the most common antibiotic-resistant genes found in isolates originating from different hospital environments which corroborated with their antibiotic resistance phenotypes. The isolates harboured mobile genetic elements consisting of plasmids (n = 11) and prophages (n = 14) that were mostly clone-specific. Of note, a large number of insertion sequence (IS) families were found on the IS3 (55%), IS5 (42%), IS1595 (40%), and Tn3 transposons the most predominant. Microbial typing using WGS data revealed 15 clones with 6 major sequence types (ST) belonging to ST16 (n = 7), ST40 (n = 6), ST21 (n = 5), ST126 (n = 3), ST23 (n = 3), and ST386 (n = 3). Phylogenomic analysis showed that the major clones were mostly conserved within specific hospital environments. However, further metadata insights revealed the complex intraclonal spread of these E. faecalis major clones between the sampling sites within each specific hospital setting. The results of these genomic analyses will offer insights into antibiotic-resistantE. faecalis in hospital environments relevant to the design of optimal infection prevention strategies in hospital settings.
    Type of Medium: Online Resource
    ISSN: 2054-4200
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2023
    detail.hit.zdb_id: 2848226-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Food Science, Hindawi Limited, Vol. 2020 ( 2020-11-12), p. 1-7
    Abstract: Meats are important potential sources of foodborne pathogens including Escherichia coli. This study was conducted to determine the prevalence and antimicrobial resistance of Escherichia coli isolated from meats in the Tamale metropolis of Ghana. Isolation of Escherichia coli was done using the procedure according to the USA-FDA Bacteriological Analytical Manual. Antibiotic resistance patterns in the Escherichia coli isolates were determined by the Kirby-Bauer disk diffusion method against 8 antibiotics. The overall prevalence of Escherichia coli in the meat samples was 84.00% (189/225). Mutton (88.89%), guinea fowl (88.89%), beef (86.67%), local chicken (80.00%), and chevon (75.56%) were contaminated by Escherichia coli. The average coliform count was 4.22 cfu/cm2 and was highest in guinea fowl (4.94 log cfu/cm2) and lowest in local chicken (3.23 log cfu/cm2). The Escherichia coli isolates were highly resistant to erythromycin (85.00%), tetracycline (73.33%), and ampicillin (71.67%). The multiple antibiotic resistance (MAR) index ranged from 0.13 to 1. The Escherichia coli isolates exhibited 23 antimicrobial resistance patterns with resistant pattern TeAmpE (tetracycline-ampicillin-erythromycin) being the most common. Multidrug resistance was 68.33% (41/60) among the Escherichia coli isolates. The results showed that Escherichia coli was commonly present in the various meat types and exhibited multidrug resistances, necessitating efficient antibiotic stewardship guidelines to streamline their use in the production industry.
    Type of Medium: Online Resource
    ISSN: 2314-5765 , 2356-7015
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2020
    detail.hit.zdb_id: 2760370-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Microbiology, Hindawi Limited, Vol. 2022 ( 2022-1-13), p. 1-12
    Abstract: The presence of the zoonotic pathogen Salmonella in the food supply chain poses a serious public health threat. This study describes the prevalence, susceptibility profiles, virulence patterns, and clonality of Salmonella from a poultry flock monitored over six weeks, using the farm-to-fork approach. Salmonella was isolated using selective media and confirmed to the genus and species level by real-time polymerase chain reaction (RT-PCR) of the invA and iroB genes, respectively. Antimicrobial susceptibility profiles were determined using Vitek-2 and the Kirby–Bauer disk diffusion method against a panel of 21 antibiotics recommended by the World Health Organisation Advisory Group on Integrated Surveillance of Antimicrobial Resistance (WHO-AGISAR). Selected virulence genes were identified by conventional PCR, and clonality was determined using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). Salmonella was present in 32.1% of the samples: on the farm (30.9%), at the abattoir (0.6%), and during house decontamination (0.6%). A total of 210 isolates contained the invA and iroB genes. Litter, faeces, and carcass rinsate isolates were classified as resistant to cefuroxime (45.2%), cefoxitin (1.9%), chloramphenicol (1.9%), nitrofurantoin (0.4%), pefloxacin (11.4%), and azithromycin (11%). Multidrug resistance (MDR) was observed among 3.8% of the isolates. All wastewater and 72.4% of carcass rinsate isolates were fully susceptible. All isolates harboured the misL, orfL, pipD, stn, spiC, hilA, and sopB virulence genes, while pefA, spvA, spvB, and spvC were absent. In addition, fliC was only present among the wastewater isolates. Various ERIC-PCR patterns were observed throughout the continuum with different subtypes, indicating the unrelated spread of Salmonella. This study concluded that poultry and the poultry environment serve as reservoirs for resistant and pathogenic Salmonella. However, there was no evidence of transmission along the farm-to-fork continuum.
    Type of Medium: Online Resource
    ISSN: 1687-9198 , 1687-918X
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2467270-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Microbiology, Hindawi Limited, Vol. 2021 ( 2021-10-23), p. 1-9
    Abstract: The hospital environment acts as a reservoir in the transmission of pathogens, such as MRSA, which may cause hospital-acquired infections. This study aimed to ascertain the prevalence, genetic relatedness, antibiotic resistance, and virulence profile of MRSA on some frequently touched hospital sites in South Africa. A total of 777 swabs were randomly collected from 11 frequently touched sites in the hospital environment of three wards of four public hospitals in the KwaZulu-Natal province of South Africa. Isolation of S. aureus and confirmation were done using genotypic and phenotypic methods. Antibiotic susceptibility testing was performed using the Kirby–Bauer disk-diffusion method. MRSA isolates were determined by the presence of the mecA gene. Virulence and resistance genes were detected using a standard monoplex PCR assay. ERIC-PCR was conducted to evaluate the genetic relatedness. An overall prevalence of 12.7% for S. aureus isolates was obtained. Out of these, 89.9% (89/99) were confirmed to be MRSA. The sites with the highest prevalence were the occupied beds (16.2% (16/99)), unoccupied beds (16.2% (16/99)), patient files (14.1% (14/99)), ward phones (13.1% (13/99)), and nurses’ tables (14.1% (14/99)). The virulence genes with the highest observed frequency were hld (87 (87.9%)) and LukS/F-PV (53 (53.5%)). The resistance genes with the highest frequency were the tetM and tetK genes detected in 60 (60.6%) and 57 (57.6%) isolates, respectively. The ERIC-PCR results obtained indicated a high level of genetic diversity; however, intraclonal (within a hospital) and interclonal (between hospitals) clusters of MRSA were observed. The study showed that MRSA can contaminate various surfaces, and this persistence allows for the dissemination of bacteria within the hospital environment. This highlights the need for improved infection prevention and control (IPC) strategies in public hospitals in the country to curb their potential transmission risks.
    Type of Medium: Online Resource
    ISSN: 1687-9198 , 1687-918X
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2467270-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Computational and Mathematical Methods in Medicine, Hindawi Limited, Vol. 2022 ( 2022-5-31), p. 1-20
    Abstract: Cancer is a disease caused by the uncontrolled, abnormal growth of cells in different anatomic sites. In 2018, it was predicted that the worldwide cancer burden would rise to 18.1 million new cases and 9.6 million deaths. Anticancer compounds, often known as chemotherapeutic medicines, have gained much interest in recent cancer research. These medicines work through various biological processes in targeting cells at various stages of the cell’s life cycle. One of the most significant roadblocks to developing anticancer drugs is that traditional chemotherapy affects normal cells and cancer cells, resulting in substantial side effects. Recently, advancements in new drug development methodologies and the prediction of the targeted interatomic and intermolecular ligand interaction sites have been beneficial. This has prompted further research into developing and discovering novel chemical species as preferred therapeutic compounds against specific cancer types. Identifying new drug molecules with high selectivity and specificity for cancer is a prerequisite in the treatment and management of the disease. The overexpression of HSP90 occurs in patients with cancer, and the HSP90 triggers unstable harmful kinase functions, which enhance carcinogenesis. Therefore, the development of potent HSP90 inhibitors with high selectivity and specificity becomes very imperative. The activities of HSP90 as chaperones and cochaperones are complex due to the conformational dynamism, and this could be one of the reasons why no HSP90 drugs have made it beyond the clinical trials. Nevertheless, HSP90 modulations appear to be preferred due to the competitive inhibition of the targeted N-terminal adenosine triphosphate pocket. This study, therefore, presents an overview of the various computational models implored in the development of HSP90 inhibitors as anticancer medicines. We hereby suggest an extensive investigation of advanced computational modelling of the three different domains of HSP90 for potent, effective inhibitor design with minimal off-target effects.
    Type of Medium: Online Resource
    ISSN: 1748-6718 , 1748-670X
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2256917-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...