GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Hindawi Limited  (38)
Materialart
Verlag/Herausgeber
  • Hindawi Limited  (38)
Sprache
Erscheinungszeitraum
  • 1
    In: Pain Research and Management, Hindawi Limited, Vol. 2020 ( 2020-12-16), p. 1-6
    Kurzfassung: This study set out to investigate the effect of massage on the Toll-like receptor 4 (TLR4) signalling pathway in the dorsal root ganglia of rats that had undergone spinal nerve ligation (SNL), with the hypothesis that massage could be used as an analgesic. Forty female SD rats were randomly divided into 5 groups: the control group, sham-operated group, model group, sham massage group, and massage group. There were 8 rats in each group. SNL rat models were established in the model group, sham massage group, and massage group. Rats in the sham-operated group underwent surgery to expose the vertebral nerves, but no further procedures were performed. The control group consisted of intact animals. The rats in the massage group underwent massage using a massage simulation machine once a day for 14 d in succession; the hind limbs of the rats in the sham massage group were gently touched with a cloth bag once a day for 14 continuous days. The rats in the control group, the sham-operated group, and the model group did not receive any intervention and were observed for 14 d. Paw withdrawal thermal latency (PWTL) and paw withdrawal mechanical threshold (PWMT) of rats in each group were detected 1 d before modelling and at 1, 3, 7, and 14 d after modelling. Fourteen days after modelling, the expression levels of TLR4, IRAK1, TRAF6, TNF-α, and IL-6 were detected in all rats. The PWTL and PWMT of SNL rats were decreased, while these parameters were elevated after massage. SNL rats showed higher levels of TLR4, IRAK1, TRAF6, IL-6, and TNF-α, and massage effectively lowered the expression levels of these molecules. Inhibiting activation of the TLR4 signalling pathway, which can reduce the release of inflammatory factors, may be one mechanism by which massage treats neuropathic pain.
    Materialart: Online-Ressource
    ISSN: 1918-1523 , 1203-6765
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2020
    ZDB Id: 2048409-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Hindawi Limited ; 2019
    In:  Contrast Media & Molecular Imaging Vol. 2019 ( 2019-07-07), p. 1-18
    In: Contrast Media & Molecular Imaging, Hindawi Limited, Vol. 2019 ( 2019-07-07), p. 1-18
    Kurzfassung: In ultrasonography, ultrasound contrast agents (UCAs) that possess high acoustic impedance mismatch with the bulk medium are frequently employed to highlight the borders between tissues by enhanced ultrasound scattering in a clinic. Typically, the most common UCA, microbubble, is generally close in size to a red blood cell ( 〈 ∼10 μm). These microscale UCAs cannot be directly entrapped into the target cells but generate several orders of magnitude stronger echo signals than the nanoscale ones. And their large containment and high ultrasound responsiveness also greatly facilitate to perform combined treatments, e.g., drug delivery and other imaging techniques. So multifunctionalized microscale UCAs appear on this scene and keep growing toward a promising direction for precise theranostics. In this review, we systematically summarize the new advances in the principles and preparations of multifunctionalized microscale UCAs and their medical applications for malignant tumors.
    Materialart: Online-Ressource
    ISSN: 1555-4309 , 1555-4317
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2019
    ZDB Id: 2222967-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Hindawi Limited ; 2022
    In:  Journal of Immunology Research Vol. 2022 ( 2022-6-14), p. 1-11
    In: Journal of Immunology Research, Hindawi Limited, Vol. 2022 ( 2022-6-14), p. 1-11
    Kurzfassung: Background. Esophageal cancer (EC), a common malignant tumor of digestive tract, is also one of the most deadly cancers. Accumulating studies have shown that the initiating and progressing multiple human diseases were closely related to the expression of MAIP. However, the specific roles and mechanisms of MAIP1 in EC remain incompletely defined. Purpose. This study aims to determine the clinical significance of MAIP1 in EC and explores its potential molecular mechanisms regulating tumor immune infiltration. Methods. We obtained RNA-seq datasets and corresponding clinical data for EC patients from the Cancer Genome Atlas (TCGA) database via the UCSC Xena browser to extract MAIP1 expression and plot survival curves to determine their prognosis. Based on the differential expression of MAIP1, EC patients were divided into high and low group to investigate the mechanism of MAIP1 in EC. In addition, the single sample gene set enrichment analysis (ssGSEA) quantified the expression of various immune cell signature marker genes and assessed the degree of immune infiltration in EC. Results. In the TCGA-EC cohort, the overexpression of MAIP1 was observed in tumor tissues compared to normal tissues ( p = 0.0038 ). Overall survival analysis showed that EC patients with the overexpression of MAIP1 presented a lower overall survival and worse prognosis ( p = 0.004 ). Enrichment analysis revealed that the differential genes (DEGs) between high and low group are involved in biological functions such as extracellular matrix and organization extracellular structure. The results of ssGSEA showed that DCs, iDCs, macrophages, mast cells, and NK cells were significantly different in MAIP1high and MAIP1low groups, and all showed high expression in the MAIP1low group. Conclusion. We proposed that MAIP1 overexpression was associated with poor prognosis and tumor immune infiltration in EC. At present, there are few MAIP1-related tumor immune infiltration studies in EC, and further investigation is needed.
    Materialart: Online-Ressource
    ISSN: 2314-7156 , 2314-8861
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2022
    ZDB Id: 2817541-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Hindawi Limited ; 2021
    In:  Journal of Tissue Engineering and Regenerative Medicine Vol. 15, No. 5 ( 2021-05), p. 419-441
    In: Journal of Tissue Engineering and Regenerative Medicine, Hindawi Limited, Vol. 15, No. 5 ( 2021-05), p. 419-441
    Materialart: Online-Ressource
    ISSN: 1932-6254 , 1932-7005
    URL: Issue
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2021
    ZDB Id: 2316155-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Oxidative Medicine and Cellular Longevity, Hindawi Limited, Vol. 2022 ( 2022-9-28), p. 1-27
    Kurzfassung: Background. Despite tremendous advances in treating osteosarcoma (OS), the survival rates of patients have failed to improve dramatically over the past decades. Ferroptosis, a newly discovered iron-dependent type of regulated cell death, is implicated in tumors, and its features in OS remain unascertained. We designed to determine the involvement of ferroptosis subcluster-related modular genes in OS progression and prognosis. Methods. The OS-related datasets retrieved from GEO and TARGET database were clustered for identifying molecular subclusters with different ferroptosis-related genes (FRGs) expression patterns. Weighted gene coexpression network analysis (WGCNA) was applied to identify modular genes from FRG subclusters. The least absolute shrinkage and selection operator (LASSO) algorithm and multivariable Cox regression analysis were adopted to develop the prognostic model. Potential mechanisms of development and prognosis in OS were explored by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA). Then, a comprehensive analysis was conducted for immune checkpoint markers and assessment of predictive power to drug response. The protein expression levels of the three ferroptosis subcluster-related modular genes were verified by immunohistochemistry. Results. Two independent subclusters presenting diverse expression profiles of FRGs were obtained, with significantly different survival states. Ferroptosis subcluster-related modular genes were screened with WGCNA, and the GESA results showed that ferroptosis subcluster-related modular genes could affect the cellular energy metabolism, thus influencing the development and prognosis of osteosarcoma. A prognostic model was established by incorporating three ferroptosis subcluster-related modular genes (LRRC1, ACO2, and CTNNBIP1) and a nomogram by integrating clinical features, and they were evaluated for the predictive power on OS prognosis. The 20 immune checkpoint-related genes confirmed the insensitivity to tumor immunotherapy in high-risk patients. IC50s of Axitinib and Cytarabine suggested a higher sensitivity to the targeted drug. Finally, the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry were consistent with bioinformatics analysis. Conclusion. Ferroptosis are closely associated with the OS prognosis. The risk-scoring model incorporating three ferroptosis subcluster-related modular genes has shown outstanding advantages in predicting patient prognosis.
    Materialart: Online-Ressource
    ISSN: 1942-0994 , 1942-0900
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2022
    ZDB Id: 2455981-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Hindawi Limited ; 2022
    In:  Oxidative Medicine and Cellular Longevity Vol. 2022 ( 2022-9-21), p. 1-21
    In: Oxidative Medicine and Cellular Longevity, Hindawi Limited, Vol. 2022 ( 2022-9-21), p. 1-21
    Kurzfassung: Background. Atherosclerotic plaque instability is a common cause of stroke and ischemic infarction, and identification of monocyte-associated genes has become a prominent feature in cardiovascular research as a contributing/predictive marker. Methods. Whole genome sequencing data were downloaded from GSE159677, GSE41571, GSE120521, and GSE118481. Single-cell sequencing data analysis was conducted to cluster molecular subtypes of atherosclerotic plaques and identify specific genes. Differentially expressed genes (DEGs) between normal subjects and patients with unstable atheromatous plaques were screened. Weighted gene coexpression network analysis (WGCNA) was performed to find key module genes. In addition, GO and KEGG enrichment analyses explored potential biological signaling pathways to generate protein interaction (PPI) networks. GSEA and GSVA demonstrated activations in plaque instability subtypes. Results. 239 monocyte-associated genes were identified based on bulk and single-cell RNA-sequencing, followed by the recognition of 1221 atherosclerotic plaque-associated DEGs from the pooled matrix. GO and KEGG analyses suggested that DEGs might be related to inflammation response and the PI3K-Akt signaling pathway. Eight no-grey modules were obtained through WGCNA analysis, and the turquoise module has the highest correlation with unstable plaque ( R 2 = 0.40 ), which contained 1323 module genes. After fetching the intersecting genes, CXCL3, FPR1, GK, and LST1 were obtained that were significantly associated with plaque instability, which had an intense specific interaction. Monocyte-associated genes associated with atherosclerotic plaque instability have certain diagnostic significance and are generally overexpressed in this patient population. In addition, 11 overlapping coexpressed genes (CEG) might also activated multiple pathways regulating inflammatory responses, platelet activation, and hypoxia-inducible factors. GSVA showed that the corresponding pathways were significantly activated in high expression samples. Conclusions. Overexpression of CXCL3, GK, FPR1, and LST1 was advanced recognition and intervention factors for unstable plaques, which might become targets for atherosclerosis rupture prevention. We also analyzed the potential mechanisms of CEG from inflammatory and oxidative stress pathways.
    Materialart: Online-Ressource
    ISSN: 1942-0994 , 1942-0900
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2022
    ZDB Id: 2455981-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Oxidative Medicine and Cellular Longevity, Hindawi Limited, Vol. 2022 ( 2022-2-14), p. 1-16
    Kurzfassung: Proinflammatory cytokines play a causal role in the development of hyperinsulinemia and T2MD. FOXO1, a transcription factor which is known to enhance proinflammation, was recently shown to be involved in obesity-induced β cell dysfunction. However, molecular mechanisms for the association remained elusive. In this study, we first found that both leptin (10 nM) and TNF-α (20 ng/ml) significantly inhibited glucose-stimulated insulin secretion (GSIS) of INS-1E cells. When in combination, the GSIS function of INS-1E cells was significantly increased compared with that of the leptin alone treatment, indicating that TNF-α attenuated the inhibiting effect of leptin on GSIS of INS-1E cells. Similarly, we found that TNF-α has the same inhibitory effect on leptin in regulating insulin synthesis and secretion, and the survival and apoptosis of insulin cells. Further studies showed that TNF-α blocks leptin pathway by reducing the expression of leptin receptor (LepRb, also called OBRb) and inhibiting the activation of STAT3, a key molecule involved in the leptin signaling pathway in INS-1E cells. Besides, the downregulated expression of phosphorylated FOXO1 was found to be involved in the possible mechanism of TNF-α. Overexpression of constitutively active FOXO1 markedly aggravated the LepRb reduction by TNF-α treatment of INS-1E cells, and the endogenous FOXO1 knockdown abolished the effect of TNF-α on INS-1E cells. Furthermore, we have proved that FOXO1 could directly bind to the promoter of LepRb as a negative transcription regulator. Taken together, the results of this study reveal that TNF-α-induced LepRb downregulated in pancreatic β cells and demonstrate that transcriptional reduction of FOXO1 might be the primary mechanism underlying TNF-α promoting INS-1E leptin resistance and β cell dysfunction. Conclusions. Our current studies based on INS-1E cells in vitro indicate that the inflammatory factor TNF-α plays an important role in the development of INS-1E leptin resistance and glucose metabolism disorders, probably through FOXO1-induced transcription reduction of LepRb promoter in pancreatic β cells, and FOXO1 may be a novel target for treating β cell dysfunction in obesity-induced hyperinsulinemia and T2DM.
    Materialart: Online-Ressource
    ISSN: 1942-0994 , 1942-0900
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2022
    ZDB Id: 2455981-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Hindawi Limited ; 2021
    In:  Stem Cells International Vol. 2021 ( 2021-5-26), p. 1-20
    In: Stem Cells International, Hindawi Limited, Vol. 2021 ( 2021-5-26), p. 1-20
    Kurzfassung: Objectives. Bones constitute organs that are engaged in constant self-remodelling. Osteoblast and osteoclast homeostasis during remodelling contribute to overall skeletal status. Orthodontics is a clinical discipline that involves the investigation and implementation of moving teeth through the bone. The application of mechanical force to the teeth causes an imbalance between osteogenesis and osteogenesis in alveolar bone, leading to tooth movement. Osteoimmunology comprises the crosstalk between the immune and skeletal systems that regulate osteoclast–osteoblast homeostasis. Interleukin- (IL-) 20, an IL-10 family member, is regarded as a proinflammatory factor for autoimmune diseases and has been implicated in bone loss disease. However, the mechanism by which IL-20 regulates osteoclast differentiation and osteoclastogenesis activation remains unclear. This study investigated the effects of IL-20 on osteoclast differentiation in a rat model; it explored the underlying molecular mechanism in vitro and the specific effects on orthodontic tooth movement in vivo. Methods. For in vitro analyses, primary rat bone marrow-derived macrophages (BMMs) were prepared from Sprague–Dawley rats for osteoclast induction. After BMMs had been treated with combinations of recombinant IL-20 protein, siRNA, and plasmids, the expression levels of osteoclast-specific factors and signalling pathway proteins were detected through real-time polymerase chain reaction, western blotting, and immunofluorescence staining. For in vivo analyses, IL-20 was injected into the rat intraperitoneal cavity after the establishment of a rat orthodontic tooth movement (OTM) model. OTM distance was detected by Micro-CT and HE staining; the expression levels of protein were detected through immunofluorescence staining. Results. In vitro analyses showed that a low concentration of IL-20 promoted preosteoclast proliferation and osteoclastogenesis. However, a high concentration of IL-20 inhibited BMM proliferation and osteoclastogenesis. IL-20 knockdown decreased the expression of osteoclast specific-markers, while IL-20 overexpression increased the expression of osteoclast specific-markers. Furthermore, IL-20 regulated osteoclast differentiation through the OPG/RANKL/RANK pathway. Overexpression of IL-20 could significantly upregulate RANKL-mediated osteoclast differentiation and osteoclast specific-marker expression; moreover, RANKL/NF-κB/NFATc1 acted as downstream signalling molecule for IL-20. In vivo analysis showed that OTM speed was significantly increased after intraperitoneal injection of IL-20; additionally, mechanical stress sensing proteins were markedly activated. Conclusions. IL-20 augments osteoclastogenesis and osteoclast-mediated bone erosion through the RANKL/NF-κB/NFATc1 signalling pathway. IL-20 inhibition can effectively reduce osteoclast differentiation and diminish bone resorption. Furthermore, IL-20 can accelerate orthodontic tooth movement and activate mechanical stress sensing proteins.
    Materialart: Online-Ressource
    ISSN: 1687-9678 , 1687-966X
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2021
    ZDB Id: 2573856-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Hindawi Limited ; 2022
    In:  Wireless Communications and Mobile Computing Vol. 2022 ( 2022-3-21), p. 1-12
    In: Wireless Communications and Mobile Computing, Hindawi Limited, Vol. 2022 ( 2022-3-21), p. 1-12
    Kurzfassung: Although the performance estimation of technological innovation activities in the Chinese high-tech industry has been discussed continuously in prior literature, few studies analyze the imbalance development of subindustries and regional heterogeneity. Therefore, this study develops a parallel slack-based measure data envelopment analysis approach to estimate the innovation efficiency of the high-tech industry from regional and industrial perspectives. Compared with prior research, the proposed SBM-DEA model can be used to identify the inefficiencies caused by the subindustries via considering internal subindustries as parallel subunits. The proposed model is applied in the Chinese high-tech industry between 2011 and 2014. Empirical results reveal three critical findings. First, there exists an improving potential for innovation efficiency. Second, significant disparities in innovation efficiency are observed at the industrial level and regional level. Third, the inefficiency of the high-tech industry mainly stems from the low performance of the electronic equipment and communication equipment subindustry and computer and office equipment subindustry. Some suggestions for enhancing innovation efficiency are also proposed.
    Materialart: Online-Ressource
    ISSN: 1530-8677 , 1530-8669
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2022
    ZDB Id: 2045240-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Hindawi Limited ; 2020
    In:  Discrete Dynamics in Nature and Society Vol. 2020 ( 2020-09-15), p. 1-19
    In: Discrete Dynamics in Nature and Society, Hindawi Limited, Vol. 2020 ( 2020-09-15), p. 1-19
    Kurzfassung: Aiming at the problem of impact angle constraint and input saturation, an integrated guidance and control (IGC) algorithm with impact angle constraint and input saturation is proposed. A three-channel independent design model of missile IGC with impact angle constraint is established, and an extended state observer with fast finite-time convergence is designed to estimate and compensate model errors and coupling relationship between channels. Based on the nonsingular terminal sliding mode control and backstepping control, the IGC three-channel independent design is completed. Nussbaum function and an auxiliary system are introduced to deal with the input saturation. The Lyapunov function is constructed to prove the finite-time convergence of the IGC algorithm. The missile six-degree-of-freedom simulation results show the effectiveness and superiority of the IGC algorithm.
    Materialart: Online-Ressource
    ISSN: 1026-0226 , 1607-887X
    Sprache: Englisch
    Verlag: Hindawi Limited
    Publikationsdatum: 2020
    ZDB Id: 2033014-5
    SSG: 11
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...