GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • HighWire Press  (1)
  • 1
    Publication Date: 2011-02-01
    Description: Stable isotopes provide a valuable perspective on the timing of elevation change of the Tibetan Plateau. We begin our paper by looking in depth at isotopic patterns in modern Tibet. We show that the {delta}18O value of surface waters decreases systematically up the Himalayan front in central Nepal by about -2.8{per thousand}/km, in agreement with the patterns documented and modeled by previous research. On the Tibetan plateau itself there is no apparent correlation between elevation and the {delta}18O value of flowing surface waters. Both surface waters and soil carbonates display a northward increase in {delta}18O values, of about 1.5{per thousand}/{degrees} north of the Himalayan crest, even though elevation increases modestly. The isotopic increase with latitude reduces the isotope-elevation gradient for water in the northernmost plateau to -1 to -2{per thousand}/km. Carbonates in both soils and lakes form at higher temperatures than assumed by previous studies on the plateau. Temperature estimates from clumped-isotope ({Delta}47) analyses of modern soil carbonates significantly exceed mean annual air T and modeled maximum summer soil temperatures by 15.8{+/-}2.8{degrees} and 9.7{+/-}2.5 {degrees}C, respectively. Similarly elevated temperatures best account for the {delta}18O values observed in modern soil and lake carbonates. We recalculated paleoelevations from previous studies on the plateau using both higher formation temperatures and latitude-corrected isotopic values. With one notable exception, our revised model produces paleoelevation estimates very close to previous estimates. The exception is the reconstruction from late Eocene age deposits at Xoh Xil, for which we calculate elevations that are higher and much closer to the current elevation than previously reconstructed. Therefore, there is no evidence for northward progression through time of Tibetan elevation change. Instead, the available--but admittedly very scanty--evidence suggests that much of Tibet attained its modern elevation by the mid-Eocene. A truly robust test of the various geodynamic models of uplift await expansion and replication of isotopic records all across Tibet, especially in the center and north and for 〉15 Ma.
    Print ISSN: 0002-9599
    Electronic ISSN: 1945-452X
    Topics: Geosciences
    Published by HighWire Press on behalf of The American Journal of Science.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...