GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Organic compounds-Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (590 pages)
    Edition: 1st ed.
    ISBN: 9780323996440
    DDC: 620.1180286
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Environmental engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (300 pages)
    Edition: 1st ed.
    ISBN: 9780128219010
    DDC: 541.39
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Green Inorganic Synthesis -- Copyright -- Contents -- Contributors -- Chapter 1: Microwave-assisted green synthesis of inorganic nanomaterials -- Description -- Key features -- 1. Introduction -- 2. Technical aspects of microwave technique -- 2.1. Principles and heating mechanism of microwave method -- 2.2. Green solvents for microwave reactions -- 2.3. Microwave versus conventional synthesis -- 2.4. Microwave instrumentation -- 2.5. Advantages and limitations -- 3. MW-assisted green synthesis of inorganic nanomaterials -- 3.1. Metallic nanostructured materials -- 3.2. Metal oxides nanostructured materials -- 3.3. Metal chalcogenides nanostructured materials -- 3.4. Quantum dot nanostructured materials -- 4. Conclusions and future aspects -- 4.1. Challenges and scope to further study -- References -- Chapter 2: Green synthesis of inorganic nanoparticles using microemulsion methods -- Description -- Key features -- 1. Introduction -- 2. Fundamental aspects of microemulsion synthesis -- 2.1. Microemulsion and types -- 2.2. Micelles, types, and formation mechanism -- 2.3. Hydrophilic-lipophilic balance number -- 2.4. Surfactants and types -- 2.5. Advantages and limitations of microemulsion synthesis of nanomaterials -- 3. Microemulsion-assisted green synthesis of inorganic nanostructured materials -- 3.1. General mechanism microemulsion method for nanomaterial synthesis -- 3.2. Preparation of metallic and bimetallic nanoparticles -- 3.3. Metal oxide synthesis by microemulsion -- 3.4. Synthesis of metal chalcogenide nanostructured materials -- 3.5. Synthesis of inorganic quantum dots -- 4. Conclusions, challenges, and scope to further study -- References -- Chapter 3: Synthesis of inorganic nanomaterials using microorganisms -- 1. Introduction. , 2. Green approach for synthesis of nanoparticles -- 3. General mechanisms of biosynthesis -- 4. Optimization of nanoparticles biosynthesis -- 4.1. Effect of the temperature -- 4.2. Effect of pH -- 4.3. Effect of metal precursor concentration -- 4.4. Effect of culture medium composition -- 4.5. Effect of biomass quantity and age -- 4.6. Synthesis time -- 5. Biosynthesis of metal oxide nanoparticles -- 5.1. Bacteria-mediated synthesis -- 5.2. Fungi-mediated synthesis -- 5.3. Yeast-mediated synthesis -- 5.4. Algae- and viruses-mediated synthesis -- 6. Biosynthesis of metal chalcogenide nanoparticles -- 7. Final considerations -- References -- Chapter 4: Challenge and perspectives for inorganic green synthesis pathways -- 1. Introduction -- 2. Synthesis methods -- 2.1. Physical synthesis -- 2.1.1. Advantages -- 2.1.2. Inconvenient -- 2.2. Chemical synthesis -- 2.2.1. Advantages -- 2.2.2. Inconvenient -- 2.3. Green synthesis of inorganic nanomaterials and application -- 3. Challenge and perspectives -- 4. Conclusion -- References -- Chapter 5: Synthesis of inorganic nanomaterials using carbohydrates -- 1. Introduction -- 1.1. Types of nanomaterials -- 1.2. Approaches for the synthesis of inorganic nanomaterials -- 1.3. Characterization of inorganic nanomaterials -- 1.4. What are carbohydrates? -- 1.4.1. Types of carbohydrates -- Monosaccharides -- Oligosaccharides -- Polysaccharides -- 2. Synthesis of inorganic nanomaterials using carbohydrates -- 2.1. Synthesis of metal nanomaterials using carbohydrates -- 2.2. Synthesis of metal oxide-based nanomaterials using carbohydrates -- 2.3. Synthesis of nanomaterials using polysaccharides extracted from fungi and plant -- 3. The advantages and disadvantages of inorganic nanomaterials -- 4. Conclusion and future scope -- References -- Chapter 6: Fundamentals for material and nanomaterial synthesis. , 1. Introduction -- 2. Fundamental synthesis for materials -- 2.1. Solid-state synthesis -- 2.2. Chemical vapor transport -- 2.3. Sol-gel process -- 2.4. Melt growth (MG) method -- 2.5. Chemical vapor deposition -- 2.6. Laser ablation methods -- 2.7. Sputtering method -- 2.8. Molecular beam epitaxy method -- 3. Fundamental synthesis for nanomaterials -- 3.1. Top-down and bottom-up approaches -- 3.1.1. Ball milling (BL) synthesis process -- 3.1.2. Electron beam lithography -- 3.1.3. Inert gas condensation synthesis method -- 3.1.4. Physical vapor deposition methods -- 3.1.5. Laser pyrolysis methods -- 3.2. Chemical synthesis methods -- 3.2.1. Sol-gel method -- 3.2.2. Chemical vapor deposition method -- 3.2.3. Hydrothermal synthesis -- 3.2.4. Polyol process -- 3.2.5. Microemulsion technique -- 3.2.6. Microwave-assisted (MA) synthesis -- 3.3. Bio-assisted (B-A) methods -- 4. Conclusion -- References -- Chapter 7: Bioinspired synthesis of inorganic nanomaterials -- 1. Introduction -- 1.1. Nanomaterials and current limitations -- 1.2. Bioinspired synthesis -- 2. General mechanism of interaction -- 3. Bioinspired synthesis of inorganic nanomaterials -- 3.1. Microorganisms-mediated synthesis -- 3.2. Plant-mediated synthesis -- 3.2.1. Root extract assisted synthesis -- 3.2.2. Leaves extract assisted synthesis -- 3.2.3. Shoot-mediated synthesis -- 3.3. Protein templated synthesis -- 3.4. DNA-templated synthesis -- 3.5. Butterfly wing scales-templated synthesis -- 4. Applications of bioinspired nanomaterials -- 5. Conclusions -- References -- Chapter 8: Polysaccharides for inorganic nanomaterials synthesis -- 1. Introduction -- 2. Polysaccharides -- 2.1. Types of polysaccharides -- 2.1.1. Cellulose -- 2.1.2. Starch -- 2.1.3. Chitin -- 2.1.4. Chitosan -- 2.1.5. Properties of polysaccharides for bioapplications -- 3. Nanomaterials -- 3.1. Types of nanomaterials. , 3.1.1. Organic nanomaterials -- Carbon nanotubes -- Graphene -- Fullerenes -- 3.1.2. Inorganic nanomaterials -- Magnetic nanoparticles -- Metal nanoparticles -- Metal oxide nanoparticles -- Luminescent inorganic nanoparticles -- 3.2. Health effects of nanomaterials -- 4. Polysaccharide-based nanomaterials -- 4.1. Cellulose nanomaterials -- 4.1.1. Preparation of cellulose nanomaterials -- 4.1.2. Structure of cellulose nanomaterials -- 4.2. Chitin nanomaterials -- 4.2.1. Preparation of chitin nanomaterials -- 4.2.2. Structure and properties of chitin nanomaterials -- 4.3. Starch nanomaterials -- 4.3.1. Preparation of starch nanomaterials -- 4.3.2. Structure and properties of starch nanomaterials -- 5. Preparation of polysaccharide-based inorganic nanomaterials -- 5.1. Bulk nanocomposites -- 5.2. Composite nanoparticles -- 6. Applications of polysaccharide-based inorganic nanomaterials -- 6.1. Biotechnological applications -- 6.1.1. Bioseparation -- 6.1.2. Biolabeling and biosensing -- 6.1.3. Antimicrobial applications -- 6.2. Biomedical applications -- 6.2.1. Drug delivery -- 6.2.2. Digital imaging -- 6.2.3. Cancer treatment -- 6.3. Agricultural applications -- 7. Characterization of polysaccharide-based nanomaterials -- 7.1. Spectroscopy -- 7.1.1. Infrared (IR) spectroscopy -- 7.1.2. Surface-enhanced Raman scattering (SERS) -- 7.1.3. UV-visible absorbance spectroscopy -- 7.2. Microscopy -- 7.2.1. Scanning electron microscopy (SEM) -- 7.2.2. Transmission electron microscopy (TEM) -- 7.3. X-ray methods -- 7.4. Thermal analysis -- 8. Future prospects -- 9. Concluding remarks -- References -- Chapter 9: Supercritical fluids for inorganic nanomaterials synthesis -- 1. Introduction -- 2. The supercritical fluid as a substitute technology -- 2.1. What is supercritical fluid? -- 2.2. Supercritical antisolvent precipitation. , 2.3. Supercritical-assisted atomization -- 2.4. Sol-gel drying method -- 3. Synthesis in supercritical fluids -- 3.1. Route of supercritical fluids containing nanomaterials synthesis -- 3.2. Sole supercritical fluid -- 3.3. Mixed supercritical fluid -- 4. Theory of the synthesis of supercritical fluids containing nanomaterials -- 4.1. Supercritical fluids working process -- 4.2. Origin of nanoparticles -- 4.3. The rapid expansion of supercritical solutions -- 5. Conclusion -- References -- Chapter 10: Green synthesized zinc oxide nanomaterials and its therapeutic applications -- 1. Introduction -- 2. Green synthesis -- 3. ZnO NPs characterization -- 4. ZnO NPs synthesis by plant extracts -- 5. ZnO NPs synthesis by bacteria and actinomycetes -- 6. ZnO NPs synthesis by algae -- 7. ZnO NPs synthesis by fungi -- 8. NPs synthesis by virus -- 9. ZnO NPs synthesis with alternative green sources -- 10. Therapeutic applications -- 11. Conclusions -- References -- Chapter 11: Sonochemical synthesis of inorganic nanomaterials -- 1. Background -- 2. Inorganic nanomaterials in sonochemical synthesis -- 3. Applications -- 4. Final comments -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Organic compounds-Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (412 pages)
    Edition: 1st ed.
    ISBN: 9780128198490
    DDC: 547/.2
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Organic Synthesis in Water and Supercriti... -- Copyright -- Contents -- Contributors -- Chapter 1: Polymer synthesis in water and supercritical water -- 1. Introduction -- 1.1. Water in industries -- 1.2. Supercritical fluids -- 1.3. Properties of water and supercritical water -- 2. Polymerization in water medium -- 2.1. Emulsion polymerization -- 2.2. Photoactivated polymerization -- 2.3. Dispersion polymerization -- 2.4. Controlled/``living´´ radical polymerization -- 2.5. Radical polymerization -- 2.6. Oxidative polymerization -- 2.7. Solution polymerization -- 2.8. Enzyme-catalyzed polymerization -- 3. Supercritical water in polymer technology -- 3.1. Supercritical water in lignocellulosic polymers -- 3.1.1. Cellulose -- 3.1.2. Hemicellulose -- 4. Conclusion -- Acknowledgment -- References -- Chapter 2: Ring-opening reactions in water -- 1. N-nucleophiles -- 1.1. Aliphatic and aromatic amines -- 1.1.1. Racemic synthesis of β-amino alcohols -- 1.1.2. Enantioselective synthesis of β-amino alcohols -- 1.2. Azidolysis -- 2. O-nucleophiles -- 3. S-nucleophile -- 4. C-nucleophiles -- 5. Se-nucleophile -- 6. H-nucleophiles -- References -- Chapter 3: Cycloaddition reactions in water -- 1. Introduction -- 2. ``In-water´´ cycloaddition reactions -- 2.1. [4+2] Cycloaddition (Diels-Alder) reactions -- 2.2. Hydrophobicity effect on rate enhancement in water -- 2.2.1. Structure facilitated hydrophobic effect -- 2.3. Hydrogen-bonding effect on rate enhancement -- 2.4. Endo- vs exo-selectivity in intermolecular D-A reactions -- 2.5. Inverse electron demand D-A reactions in water -- 2.6. Asymmetric Diels-Alder reactions in water -- 2.7. Application to the total synthesis of natural products -- 2.8. Intramolecular Diels-Alder reactions in water. , 2.9. Aqueous intramolecular D-A reaction in the total synthesis -- 2.10. [3+2] Cycloaddition reactions in water -- 2.11. [4+3] Cycloaddition reaction -- 2.12. [2+2+2] Cycloadditions -- 2.13. [5+2] Cycloadditions -- 3. Cycloaddition reactions ``on-water´´ -- 4. Concluding remarks -- Acknowledgments -- References -- Chapter 4: Hydrogenation reactions in water -- 1. Introduction -- 2. Types of hydrogenation -- 2.1. Catalytic hydrogenation -- 2.2. Transfer hydrogenation -- 2.3. Asymmetric hydrogenation -- 2.4. Asymmetric transfer hydrogenation -- 2.5. Electrocatalytic hydrogenation -- 2.6. Selective hydrogenation -- 2.6.1. Chemoselective hydrogenation -- 2.6.2. Diastereoselective hydrogenation -- 2.6.3. Regioselective hydrogenation -- 2.7. Other hydrogenation -- 3. Water as hydrogen donor -- 3.1. Synthesis of aliphatic compounds -- 3.2. Synthesis of aromatic compounds -- 3.3. Synthesis of carbonyl compounds -- 3.4. Synthesis of alcohols, ethers, sugars, nitro and nitril compounds -- 3.5. Synthesis of bio-oils, fossil fuel, and cellulose -- 4. Water as solvent -- 4.1. Synthesis of aliphatic compounds -- 4.2. Synthesis of aromatic compounds -- 4.3. Synthesis of carbonyl compounds -- 4.4. Synthesis of alcohols, ethers, sugars, nitro, and nitril compounds -- 5. Conclusion -- References -- Chapter 5: Magnetically separable nanocatalyzed synthesis of bioactive heterocycles in water -- 1. Introduction -- 2. Synthesis of nitrogen-containing heterocycles -- 2.1. Synthesis of N-substituted pyrroles -- 2.2. Synthesis of 1,4-dihydropyridines -- 2.3. Synthesis of hexahydroquinoline carboxylates -- 2.4. Synthesis of quinolines -- 2.5. Synthesis of acridine-1,8(2H,5H)-diones -- 2.6. Synthesis of benzo[d]imidazoles -- 2.7. Synthesis of imidazo[1,2-a]pyridines -- 2.8. Synthesis of quinoxalines -- 2.9. Synthesis of 1,2,3-triazoles. , 2.10. Synthesis of pyrimido[4,5-b]quinoline and indeno fused pyrido[2,3-d]pyrimidines -- 2.11. Synthesis of pyrido[2,3-d:6,5-d]dipyrimidines -- 2.12. Synthesis of spiropyrazolo pyrimidines -- 2.13. Synthesis of spiro[indoline-3,5-pyrido[2,3-d]pyrimidine] derivatives -- 2.14. Synthesis of 2-amino-tetrahydro-1H-spiro[indoline-3,4-quinoline] derivatives -- 2.15. Synthesis of spiro[indoline-3,2-quinoline] derivatives -- 3. Synthesis of oxygen-containing heterocycles -- 3.1. Synthesis of 4-methylcoumarins -- 3.2. Synthesis of 2-amino-3-cyano-4H-chromenes -- 3.3. Synthesis of 2-amino-4H-chromen-4-yl phosphonates -- 3.4. Synthesis of tetrahydro-1H-xanthen-1-one -- 3.5. Synthesis of pyran annulated scaffolds -- 4. Synthesis of nitrogen as well as oxygen-containing heterocycles -- 4.1. Synthesis of furo[3,4-b]quinoline derivatives -- 4.2. Synthesis of spiro[furo[3,4:5,6]pyrido[2,3-d]pyrimidine-5,3-indoline] derivatives -- 4.3. Synthesis of spirooxindole derivatives -- 4.4. Synthesis of pyrrole fused heterocycles -- 4.5. Synthesis of pyrano[2,3-c]pyrazoles -- 4.6. Synthesis of tetrahydropyrano[3,2-c]quinolin-5-ones -- 4.7. Synthesis of chromeno[1,6]naphthyridines -- 4.8. Synthesis of 1H-naphtho[1,2-e][1,3]oxazine derivatives -- 5. Conclusions -- Acknowledgments -- References -- Chapter 6: Stereoselective organic synthesis in water: Organocatalysis by proline and its derivatives -- 1. Introduction -- 2. Reactions in homogeneous solution or micellar media -- 2.1. Aldol reaction -- 2.2. Knoevenagel condensation -- 2.3. Michael addition -- 2.4. Mannich reaction -- 2.5. Diels-Alder reaction -- 2.6. α-Aminoxylation -- 2.7. Asymmetric hydrogenation -- 3. Reactions catalyzed by solid-supported proline derivatives -- 3.1. Reactions catalyzed by silica-supported proline species -- 3.2. Reactions catalyzed by polymer-supported proline species -- 4. Summary and outlook. , References -- Chapter 7: CN formation reactions in water -- 1. Introduction -- 2. Homogeneous catalysts -- 3. Heterogeneous catalysts -- 4. Conclusions -- Acknowledgments -- References -- Chapter 8: Regioselective synthesis in water -- 1. Introduction -- 2. Metal catalyzed regioselective organic synthesis in water -- 3. Regioselective organo-catalytic reactions in aqueous media -- 4. A catalyst-free regioselective reaction in aqueous media -- References -- Chapter 9: Aqueous polymerizations -- 1. Introduction -- 2. Polymerization: Fundamentals and methods -- 2.1. Fundamentals of polymerization -- 2.2. Methods of polymerization: Solution polymerization -- 2.3. Methods of polymerization: Dispersion polymerization and polycondensation -- 2.4. Methods of polymerization: Suspension polymerizations and polycondensations -- 2.5. Emulsion polymerization and polycondensation -- 3. Free-radical polymerizations -- 4. Ionic polymerizations -- 4.1. Cationic polymerization -- 4.2. Anionic polymerization -- 5. Controlled radical polymerizations -- 5.1. Reversible addition-fragmentation chain-transfer polymerizations -- 5.2. Nitroxide-mediated polymerization -- 6. Metal-mediated polymerizations -- 6.1. Atom transfer radical polymerization -- 6.2. Ring-opening metathesis polymerization -- 7. Polycondensation -- 8. Conclusions -- Acknowledgments -- References -- Chapter 10: Microwave- and ultrasound-assisted heterocyclics synthesis in aqueous media -- 1. Introduction -- 2. Microwave-assisted heterocyclics synthesis in water -- 3. Ultrasound-assisted heterocyclics synthesis in water -- 4. Conclusion and future prospects -- References -- Chapter 11: Recent advances on carbon-carbon bond forming reactions in water -- 1. Introduction -- 2. Carbon-carbon coupling reactions -- 3. Couplings in water are biphasic -- 4. Heterogeneous catalysis. , 5. Factors affecting CC coupling reactions in water -- 5.1. Catalyst -- 5.2. Bimetallic catalysts -- 5.3. Base and concentration effect -- 5.4. Light water/heavy water -- 5.5. Energy source -- 5.6. Additives and transfer agents -- 6. Specific CC coupling reactions -- 6.1. Mizoroki-Heck reaction -- 6.2. Hiyama reaction -- 6.3. Suzuki-Miyaura reaction -- 6.4. Sonogashira-Hagihara reaction -- 6.5. Stille reaction -- 6.6. Negishi reaction -- 7. Applications in synthesis -- 7.1. Derivatization of biomolecules -- 7.2. Bioactive molecules -- 8. Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Nanotechnology-Health aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (446 pages)
    Edition: 1st ed.
    ISBN: 9780323951722
    DDC: 615.1
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Electronic books.
    Description / Table of Contents: Surveys recent advances in conducting polymers and their composites. Chapters address synthetic approaches, and applications in all types of electrochemical energy storage devices and next-generation devices. Evaluates the execution of these materials as electrodes in electrochemical power sources.
    Type of Medium: Online Resource
    Pages: 1 online resource (353 pages)
    Edition: 1st ed.
    ISBN: 9780429510885
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Contributors -- Editors -- Chapter 1. Polythiophene-Based Battery Applications -- 1.1 Introduction -- 1.2 Synthesis -- 1.2.1 Electrochemical Polymerization -- 1.2.2 Chemical Synthesis -- 1.3 Battery Applications of PTs -- 1.3.1 PTs as Cathodic Materials -- 1.3.1.1 PTs as Active Materials -- 1.3.1.2 PTs as Binder -- 1.3.1.3 PTs as Conduction-Promoting Agents -- 1.3.2 PTs as Air Cathode -- 1.3.2.1 Li-Air Batteries -- 1.3.2.2 Aluminum-Air Battery -- 1.3.2.3 Zinc-Air Battery -- 1.3.3 PTs as Anodic Materials -- 1.3.3.1 PTs as Active Materials for Anode -- 1.3.3.2 PTs as Binders -- 1.3.3.3 PTs as Conduction Promoting Agents (CPAs) -- 1.3.4 PTs as Battery Separators -- 1.3.4.1 Li-Ion Batteries -- 1.3.4.2 Li-S Batteries -- 1.3.4.3 Li-O2 Batteries -- 1.3.5 PTs as Electrolytes -- 1.3.6 PTs as Coin-cell Cases -- 1.3.7 PTs as Li-O2 Catalyst -- 1.4 Conclusion -- References -- Chapter 2. Synthetic Strategies and Significant Issues for Pristine Conducting Polymers -- 2.1 Introduction -- 2.2 Conduction Mechanism -- 2.3 Synthesis of Conducting Polymers -- 2.3.1 Synthesis through Polymerization -- 2.3.1.1 Chain-Growth Polymerization -- 2.3.1.2 Step-Growth Polymerization -- 2.3.2 Synthesis by Doping with Compatible Dopants -- 2.3.2.1 Types of Doping Agents -- 2.3.2.2 Doping Techniques -- 2.3.2.3 Mechanism of Doping -- 2.3.2.4 Influence of Doping on Conductivity -- 2.3.3 Electrochemical Polymerization -- 2.3.4 Photochemical Synthesis -- 2.4 Various Issues for Synthesis -- 2.4.1 Vapor-Phase Polymerization -- 2.4.2 Hybrid Conducting Polymers -- 2.4.3 Nanostructure Conducting Polymers -- 2.4.4 Narrow Bandgap Conducting Polymers -- 2.4.5 Synthesis in Supercritical CO2 -- 2.4.6 Biodegradability and Biocompatibility of Conducting Polymers -- 2.5 Applications. , 2.6 Future Scope for Applications -- 2.7 Conclusions -- Abbreviations -- References -- Chapter 3. Conducting Polymer Derived Materials for Batteries -- 3.1 Introduction -- 3.2 Theory -- 3.3 Discussion on Conducting Polymer-Derived Materials -- 3.3.1 PEDOT Derivatives -- 3.3.1.1 Structural Properties -- 3.3.1.2 Electrochemical Studies of PEDOT and Its Derivatives -- 3.3.1.3 Magnetic Properties -- 3.3.2 PPy for the Energy-Storage Devices -- 3.3.2.1 Structural Property of PPy -- 3.3.2.2 Electrochemical Properties of Polypyrrol -- 3.3.2.3 Magnetic Properties -- 3.3.3 PANI for Battery Application -- 3.3.3.1 Structural Properties -- 3.3.3.2 Electrochemical Properties of PANI for Battery Electrode -- 3.3.3.3 Magnetic Properties of PANI -- 3.4 Summary and Conclusions -- References -- Chapter 4. An Overview on Conducting Polymer-Based Materials for Battery Application -- 4.1 Introduction -- 4.2 Principle of Conducting Polymer Battery -- 4.3 Assortment of Conducting Polymer Electrodes for Battery Application -- 4.4 Mechanism of Conducting Polymers in Rechargeable Batteries -- 4.5 Organic Conducting Polymer for Lithium-ion Battery -- 4.5.1 Types of Organic Conducting Polymers -- 4.6 Synthesis of Conducting Polymer -- 4.6.1 Hard-template Method -- 4.6.2 Soft-template Method -- 4.6.3 Template-free Technique -- 4.6.4 Self-Assembly or Interfacial -- 4.6.5 Electrospinning -- 4.7 Characterization -- 4.7.1 Surface Characterization by AFM and AFMIR -- 4.7.2 Transmission Electron Microscopy -- 4.7.3 Electrochemical Characterization -- 4.8 Applications of Various Conducting Polymers in Battery -- 4.8.1 Polyacetylene Battery -- 4.8.2 Polyaniline Batteries -- 4.8.3 Poly (p-phenylene) Batteries -- 4.8.4 Heterocyclic Polymer Batteries -- 4.9 Summary and Outlook -- References -- Chapter 5. Polymer-Based Binary Nanocomposites -- 5.1 Introduction -- 5.2 Binary Composites. , 5.3 Nanostructured CPs -- 5.4 Strategies to Improve Performance -- 5.4.1 Low-dimensional Capacitors -- 5.4.2 Hybrid Capacitors -- 5.4.2.1 Hybrid Electrode Material -- 5.5 CP/Carbon-based Binary Composite -- 5.6 CP/Metal Oxides Binary Composites -- 5.7 CP/Metal Sulfides Binary Complexes -- 5.8 Other Cp-supported Binary Complexes -- 5.9 Conclusion -- References -- Chapter 6. Polyaniline-Based Supercapacitor Applications -- 6.1 Introduction -- 6.2 Polyaniline (PANI) and Its Application Potential -- 6.3 Supercapacitors -- 6.3.1 PANI in Supercapacitors -- 6.3.2 PANI and Carbon Composites -- 6.3.3 PANI/Porous and Carbon Composites -- 6.3.4 PANI/Graphene Composites -- 6.3.5 PANI/CNTs Composites -- 6.3.6 Polyaniline Activation/Carbonization -- 6.3.7 Composites of Polyaniline with Various Conductive Polymer Blends -- 6.3.8 Composites of Polyaniline with Transition Metal Oxides -- 6.3.9 Composites of Polyaniline Core-Shells with Metal Oxides -- 6.3.10 PANI-modified Cathode Materials -- 6.3.11 PANI-modified Anode Materials -- 6.4 Redox-active Electrolytes for PANI Supercapacitors -- 6.5 Examples of Various Polyaniline-based Supercapacitor -- 6.5.1 Composites of Polyaniline Doped with CoCl2 as Materials for Electrodes -- 6.5.2 Composites of Polyaniline Nanofibers with Graphene as materials for electrodes -- 6.5.3 Composites of Polyaniline (PANI) with Graphene Oxide as Electrode Materials -- 6.5.4 Hybrid Films of Manganese Dioxide and Polyaniline as Electrode Materials -- 6.5.5 Composites of Activated Carbon/Polyaniline with Tungsten Trioxide as Electrode Materials -- 6.5.6 PANI- and MOF-based Flexible Solid-state Supercapacitors -- 6.5.7 Polyaniline-based Nickel Electrodes for Electrochemical Supercapacitors -- 6.5.8 Hydrogel of Ultrathin Pure Polyaniline Nanofibers in Supercapacitor Application -- Conclusion -- Acknowledgements -- References. , Chapter 7. Conductive Polymer-derived Materials for Supercapacitor -- 7.1 Introduction -- 7.2 Types of Supercapacitor -- 7.3 Parameters of Supercapacitors -- 7.4 Conducting Polymers (CPs) as Electrode Materials -- 7.4.1 Class of Conducting Polymer as Supercapacitor Electrode -- 7.5 Polyaniline (PANI)-based Electrode -- 7.6 Polypyrrole (PPy)-based Electrode -- 7.7 Polythiophene (PTh)-based Electrode -- 7.8 Conclusions -- Acknowledgement -- References -- Chapter 8. Conducting Polymer-Metal Based Binary Composites for Battery Applications -- 8.1 Conducting polymer (CPs) -- 8.2 Conducting polymers conductivity -- 8.3 Conducting polymer composites -- 8.3.1 Metal center nanoparticles -- 8.3.2 Metal nanoparticles -- 8.4 Conducting Polymer Based Binary Composites -- 8.4.1 Metal Matrix Composites (MMC) -- 8.4.2 Poly (Thiophene) composite -- 8.4.3 Poly (Para-Phenylene Vinylene) composite -- 8.4.4 Poly (Carbazole) composite -- 8.4.5 Vanadium oxide based conducting composite -- 8.4.6 PANI-V2O5 composite -- 8.4.7 Poly(N-sulfo propyl aniline)-V2O5 composite -- 8.5 Conducting polymer composite battery applications -- 8.5.1 Conducting polymer composite for Lithium-ion (Li+) based battery -- 8.5.2 Conducting polymer composites for Sodium-ion (Na+) based Battery -- 8.5.3 Conducting Polymer composite for Mg-Ion (Mg+2) Based Battery -- 8.6 Conducting polymer based composites for electrode materials -- References -- Chapter 9. Novel Conducting Polymer-Based Battery Application -- 9.1 Conducting Polymers (CPs) -- 9.1.1 Poly(Acetylene) -- 9.1.2 Poly(Thiophene) -- 9.1.3 Poly(Aniline) -- 9.1.4 Poly(Pyrrole) -- 9.1.5 Poly(Paraphenylene) and Poly(Phenylene) -- 9.2 Battery Applications of Conducting Polymers -- 9.2.1 Lithium Sulfide batteries -- 9.2.2 Binder for Lithium sulfide battery cathode -- 9.2.3 Sulfur encapsulation for electrode materials. , 9.2.4 Sulfur Encapsulation through Conductive Polymers -- 9.2.5 Conducting polymer anodes for Lithium sulfide battery -- 9.2.6 Conducting polymer as materials interlayer -- 9.3 Li+-ion-based Battery Applications of Conducting Polymers -- 9.4 Na+- ion-based Battery Applications of Conducting Polymers -- 9.5 Mg+2-ion-based Battery Applications of Conducting Polymers -- References -- Chapter 10. Conducting Polymer-Carbon-Based Binary Composites for Battery Applications -- Abbreviations -- 10.1 Introduction -- 10.2 Batteries -- 10.2.1 Types of Batteries -- 10.2.2 Electrode Materials -- 10.3 Conducting Polymer-Carbon-Based Binary Composite in Battery Applications -- 10.3.1 Polyaniline PANI-Carbon-Based Composite -- 10.3.2 Polypyrrole (PPy)-Carbon-Based Composite -- 10.3.3 Poly(3,4-ethylenedioxythiophene) (PEDOT)-Carbon-Based Composite -- 10.3.4 Others Conducting Polymer-Carbon-Based Composite -- 10.4 Conclusions -- Acknowledgements -- References -- Chapter 11. Polyethylenedioxythiophene-Based Battery Applications -- 11.1 Chemistry of PEDOT -- 11.1.1 PEDOT Synthesis and Morphology -- 11.1.1.1 Synthetic Techniques to Achieve Desired Morphologies -- 11.1.2 PEDOT-Based Nanocomposites -- 11.2 PEDOT-Based Polymers in Lithium-Sulfur Batteries -- 11.3 Lithium-Air Battery Based on PEDOT or PEDOT:PSS -- 11.3.1 PEDOT-Based Nanocomposites for Li-O2 Batteries -- 11.3.2 PEDOT:PSS-Based Li-O2 Battery Cathodes -- 11.4 Lithium and Alkali Ion Polythiophene Batteries -- 11.4.1 Cathodes -- 11.4.1.1 Cathode Binders and Composites -- 11.4.2 Anodes -- 11.4.2.1 Anode Binders and Composites -- 11.4.3 All-Polythiophene and Metal-Free Batteries -- References -- Chapter 12. Polythiophene-Based Supercapacitor Applications -- 12.1 Introduction -- 12.2 Properties of Polythiophene (PTh) -- 12.3 Synthesis of Polythiophene -- 12.4 Charge Storage in Polythiophene Electrochemical Capacitors. , 12.5 Polythiophene Electrode Fabrication.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Porous materials. ; Electronic books.
    Description / Table of Contents: Internationally assembled experts in the field describe developments and advances in synthesis, tuning parameters, and applications of porous polymers. Chapter topics span basic studies, novel issues, and applications addressing all aspects in a one-stop reference on porous polymers.
    Type of Medium: Online Resource
    Pages: 1 online resource (277 pages)
    Edition: 1st ed.
    ISBN: 9781000567168
    DDC: 547/.7
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1: Introduction to Porous Polymers -- 1.1 Introduction -- 1.2 Types of Porous Polymers -- 1.3 Synthetic Methods for Porous Polymer Network -- 1.4 Conclusion -- References -- Chapter 2: Hyper-crosslinked Polymers -- 2.1 Introduction -- 2.1.1 Overview -- 2.1.2 Porous Polymer -- 2.1.3 Crosslinking -- 2.2 Hyper-crosslinked Polymers -- 2.3 Synthesis Methods of HCPs -- 2.3.1 Post-crosslinking Polymer Precursors -- 2.3.2 Direct One-Step Polycondensation -- 2.3.3 Knitting Rigid Aromatic Building Blocks by External Crosslinkers -- 2.4 Structure and Morphology of HCPs -- 2.4.1 Nanoparticles -- 2.4.2 Hollow Capsules -- 2.4.3 2D Membranes -- 2.4.4 Monoliths -- 2.5 HCPs Properties -- 2.5.1 Polymer Surface -- 2.5.1.1 Hydrophilicity -- 2.5.1.2 Hydrophobicity -- 2.5.1.3 Amphiphilicity -- 2.5.2 Porosity and Surface Area -- 2.5.3 Swelling Behavior -- 2.5.4 Thermomechanical Properties -- 2.6 Functionalization of HCPs -- 2.7 Characterization of HCPs -- 2.7.1 Compositional and Structural Characterization -- 2.7.2 Morphological Characterization -- 2.7.3 Porosity and Surface Area Analysis -- 2.7.4 Other Analysis -- 2.8 Applications -- 2.8.1 Storage Capacity -- 2.8.1.1 Storage of Hydrogen -- 2.8.1.2 Storage of Methane -- 2.8.1.3 CO 2 Capture -- 2.8.2 Environmental Remediation -- 2.8.3 Heterogeneous Catalysis -- 2.8.4 Drug Delivery -- 2.8.5 Sensing -- 2.8.6 Other Applications -- 2.9 Conclusion -- References -- Chapter 3: Porous Ionic Polymers -- 3.1 Introduction: A Distinctive Feature of the Porous Structure of Ionic Polymers -- 3.2 Ionic Polymers in Dry State -- 3.3 Ionic Polymers in Swollen State: Hsu-Gierke Model -- 3.4 Modifications of Hsu-Gierke Model: Hydration of Ion Exchange Polymers. , 3.5 Methods for Research of Porous Structure of Ionic Polymers -- 3.5.1 Nitrogen Adsorption-Desorption -- 3.5.2 Mercury Intrusion -- 3.5.3 Adsorption-Desorption of Water Vapor -- 3.5.4 Differential Scanning Calorimetry -- 3.5.5 Standard Contact Porosimetry -- 3.6 Conclusions -- References -- Chapter 4: Analysis of Qualitative and Quantitative Criteria of Porous Plastics -- 4.1 Introduction -- 4.2 Sorting of Porous Polymers -- 4.2.1 Macroporous Polymers -- 4.2.2 Microporous Polymers -- 4.2.3 Mesoporous Polymers -- 4.3 Methodology -- 4.3.1 AHP Analysis -- 4.4 Conclusions -- References -- Chapter 5: Novel Research on Porous Polymers Using High Pressure Technology -- 5.1 Background -- 5.2 Porous Polymers Based on Natural Polysaccharides -- 5.3 Parameters Involved in the Porous Polymers Processing by High Pressure -- 5.4 Supercritical Fluid Drying for Porous Polymers Processing -- 5.5 Porous Polymers for Foaming and Scaffolds by Supercritical Technology -- 5.6 Supercritical CO 2 Impregnation in Porous Polymers for Food Packaging -- 5.7 Synthesis of Porous Polymers by Supercritical Emulsion Templating -- 5.8 Porous Polymers as Supports for Catalysts Materials by Supercritical Fluid -- 5.9 Porous Metal-Organic Frameworks Polymers by Supercritical Fluid Processing -- 5.10 Concluding Remarks -- Acknowledgments -- References -- Chapter 6: Porous Polymer for Heterogeneous Catalysis -- 6.1 Introduction -- 6.2 Stability and Functionalization of POPs -- 6.3 Strategies for Synthesizing POP Catalyst -- 6.3.1 Co-polymerization -- 6.3.1.1 Acidic and Basic Groups -- 6.3.1.2 Ionic Groups -- 6.3.1.3 Ligand Groups -- 6.3.1.4 Chiral Groups -- 6.3.1.5 Porphyrin Group -- 6.3.2 Self-polymerization -- 6.3.2.1 Organic Ligand Groups -- 6.3.2.2 Organocatalyst Groups -- 6.3.2.3 Ionic Groups -- 6.3.2.4 Chiral Ligand Groups -- 6.3.2.5 Porphyrin Groups. , 6.4 Applications of Various Porous Polymers -- 6.4.1 CO 2 Capture and Utilization -- 6.4.1.1 Ionic Liquid/Zn-PPh 3 Integrated POP -- 6.4.1.1.1 Mechanism of the Cycloaddition Reaction -- 6.4.1.2 Triphenylphosphine-based POP -- 6.4.2 Energy Storage -- 6.4.3 Heterogeneous Catalysis -- 6.4.3.1 Cu(II) Complex on Pyridine-based POP for Nitroarene Reduction -- 6.4.3.2 POP-supported Rhodium for Hydroformylation of Olefins -- 6.4.3.3 Ni(II)-metallated POP for Suzuki-Miyaura Crosscoupling Reaction -- 6.4.3.4 Ru-loaded POP for Decomposition of Formic Acid to H 2 -- 6.4.3.5 Porphyrin-based POP to Support Mn Heterogeneous Catalysts for Selective Oxidation of Alcohols -- 6.4.3.5.1 Mechanism of the Oxidation of Alcohols by TFP-DPMs -- 6.4.4 Photocatalysis -- 6.4.4.1 Conjugated Porous Polymer Based on Phenanthrene Units -- 6.4.4.2 (dipyrrin)(bipyridine)ruthenium(II) Visible Light Photocatalyst -- 6.4.4.3 Carbazole-based CMPs for C-3 Functionalization of Indoles -- 6.4.4.3.1 Mechanism of C-3 Formylation of N-methylindole by CMP-CSU6 Polymer Catalyst -- 6.4.4.3.2 The Mechanism for C-3 Thiocyanation of 1H-indole -- 6.4.5 Electrocatalysis -- 6.4.5.1 Redox-active N-containing CPP for Oxygen Reduction Reaction (ORR) -- References -- Chapter 7: Triazine Porous Frameworks -- 7.1 Introduction -- 7.2 Synthetic Procedures of CTFs and Their Structural Designs -- 7.2.1 Ionothermal Trimerization Strategy -- 7.2.2 High Temperature Phosphorus Pentoxide (P 2 O 5)-Catalyzed Method -- 7.2.3 Amidine-based Polycondensation Methods -- 7.2.4 Superacid Catalyzed Method -- 7.2.5 Friedel-Crafts Reaction Method -- 7.3 Applications of CTFs -- 7.3.1 Adsorption and Separation -- 7.3.1.1 CO 2 Capture and Separation -- 7.3.1.2 The Removal of Pollutants -- 7.3.2 Heterogeneous Catalysis -- 7.3.3 Applications for Energy Storage and Conversion -- 7.3.3.1 Metal-Ion Batteries -- 7.3.3.2 Supercapacitors. , 7.3.4 Electrocatalysis -- 7.3.5 Photocatalysis -- 7.3.6 Other Applications of CTFs -- References -- Chapter 8: Advanced Separation Applications of Porous Polymers -- 8.1 Introduction -- 8.2 Advanced Separation Applications -- 8.3 Separation through Adsorption -- 8.4 Water Treatment -- 8.5 Conclusion -- Abbreviations -- References -- Chapter 9: Porous Polymers for Membrane Applications -- 9.1 Introduction -- 9.2 Introduction to Synthesis of Porous Polymeric Particles -- 9.3 Preparation of Porous Polymeric Membrane -- 9.4 Morphology of Membrane and Its Parameters -- 9.5 Emerging Applications of Porous Polymer Membranes -- 9.6 Polysulfone and Polyvinylidene Fluoride Used as Porous Polymers for Membrane Application -- 9.6.1 Polysulfone Membranes -- 9.6.2 Polyvinylidene Fluoride Membranes -- 9.7 Use of Porous Polymeric Membranes for Sensing Application -- 9.8 Use of Porous Polymeric Electrolytic Membranes Application -- 9.9 Use of Porous Polymeric Membrane for Numerical Modeling and Optimization -- 9.10 Use of Porous Polymers for Biomedical Application -- 9.11 Use of Porous Polymeric Membrane in Tissue Engineering -- 9.12 Use of Porous Polymeric Membrane in Wastewater Treatment -- 9.13 Use of Porous Polymeric Membrane for Dye Rejection Application -- 9.14 Porous Polymeric Membrane Antifouling Application -- 9.15 Porous Polymeric Membrane Used for Fuel Cell Application -- 9.16 Conclusion -- References -- Chapter 10: Porous Polymers in Solar Cells -- 10.1 Introduction -- 10.1.1 Si-based Solar Cells -- 10.1.2 Thin-film Solar Cells -- 10.1.3 Organic Solar Cells -- 10.2 Porous Polymers in DSSCs -- 10.2.1 Porous Polymers in Electrodes -- 10.2.2 Porous Polymer as a Counter Electrode -- 10.2.3 Porous Polymers in TiO 2 Photoanode -- 10.2.4 Porous Polymers in Electrolyte -- 10.2.5 Porous Polymer as Energy Conversion Film. , 10.2.5.1 Polyvinylidene Fluoride-co-Hexafluoropropylene (PVDF-HFP) Membranes -- 10.2.5.2 Pyridine-based CMPs Aerogels (PCMPAs) -- 10.2.6 Porous Polymers in Coating of Solar Cell -- 10.2.7 Porous Polymers as Photocatalyst or Electrocatalyst -- 10.3 Perovskite Solar Cells -- 10.3.1 Porous Polymers in Electron Transport Layers -- 10.3.2 Porous Polymers in Hole Transport Layers -- 10.3.3 Porous Polymer as Energy Conversion Film -- 10.3.4 Porous Polymers as Interlayers -- 10.3.5 Porous Polymers in Morphology Regulations -- 10.4 Porous Polymers in Silicon Solar Cell -- 10.5 Miscellaneous -- 10.5.1 Porous Polymers in Solar Evaporators -- 10.5.2 Charge Separation Systems in Solar Cells -- 10.5.3 Porous Polymers in ZnO Photoanode -- 10.6 Conclusions -- References -- Chapter 11: Porous Polymers for Hydrogen Production -- 11.1 Introduction -- 11.1.1 Approaches Utilized for the Generation of Porous Polymers (PPs) -- 11.1.1.1 Infiltration -- 11.1.1.2 Layer-by-Layer Assembly (LbL) -- 11.1.1.3 Conventional Polymerization -- 11.1.1.4 Electrochemical Polymerization -- 11.1.1.5 Controlled/Living Polymerization (CLP) -- 11.1.1.6 Macromolecular Design -- 11.1.1.7 Self-assembly -- 11.1.1.8 Phase Separation -- 11.1.1.9 Solid and Liquid Templating -- 11.1.1.10 Foaming -- 11.2 Various Porous Polymers for H 2 Production -- 11.2.1 Photocatalysts Based on Conjugated Microporous Polymers -- 11.2.2 Conjugated Microporous Polymers -- 11.2.3 Porous Conjugated Polymer (PCP) -- 11.2.4 Membrane Reactor -- 11.2.5 Paper-Structured Catalyst with Porous Fiber-Network Microstructure -- 11.2.6 Porous Organic Polymers (POPs) -- 11.2.7 PEM Water Electrolysis -- 11.2.8 Microporous Inorganic Membranes -- 11.2.9 Hybrid Porous Solids for Hydrogen Evolution -- 11.3 Other Alternatives for Hydrogen Production -- 11.3.1 Metal-Organic Frameworks (MOFs) -- 11.3.2 Covalent Organic Frameworks. , 11.3.3 Photochemical Device.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (426 pages)
    Edition: 1st ed.
    ISBN: 9780323998178
    DDC: 621.312424
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Raw materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (237 pages)
    Edition: 1st ed.
    ISBN: 9781000596465
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: Graphene from Sugar and Sugarcane Extract: Synthesis, Characterization, and Applications -- Chapter 2: Graphene from Honey -- Chapter 3: Graphene from Animal Waste -- Chapter 4: Graphene from Essential Oils -- Chapter 5: Synthesis of Graphene from Biowastes -- Chapter 6: Graphene from Rice Husk -- Chapter 7: Synthesis of Graphene from Vegetable Waste -- Chapter 8: Graphene Oxide from Natural Products and Its Applications in the Agriculture and Food Industry -- Chapter 9: Graphene from Sugarcane Bagasse: Synthesis, Characterization, and Applications -- Chapter 10: Graphene Synthesis, Characterization and Applications -- Chapter 11: Graphene from Leaf Wastes -- Chapter 12: Biosynthesis of Reduced Graphene Oxide and Its Functionality as an Antibacterial Template -- Chapter 13: Graphene and Its Composite for Supercapacitor Applications -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Semiconductors-Optical properties. ; Electronic books.
    Description / Table of Contents: This comprehensive reference describes the classifications, optical properties and applications of semiconductors. Accomplished experts in the field share their knowledge and examine new developments. This is an invaluable resource for engineers, scientists, academics and Industry R&D teams working in applied physics.
    Type of Medium: Online Resource
    Pages: 1 online resource (186 pages)
    Edition: 1st ed.
    ISBN: 9781000598957
    DDC: 537.6/226
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: Semiconductor Optical Fibers -- Chapter 2: Optical Properties of Semiconducting Materials for Solar Photocatalysis -- Chapter 3: Semiconductor Optical Memory Devices -- Chapter 4: Semiconductor Optical Utilization in Agriculture -- Chapter 5: Nonlinear Optical Properties of Semiconductors, Principles, and Applications -- Chapter 6: Semiconductor Photoresistors -- Chapter 7: Semiconductor Photovoltaic -- Chapter 8: Progress and Challenges of Semiconducting Materials for Solar Photocatalysis -- Chapter 9: Linear Optical Properties of Semiconductors: Principles and Applications -- Chapter 10: Computational Techniques on Optical Properties of Metal-Oxide Semiconductors -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Hauppauge :Nova Science Publishers, Incorporated,
    Keywords: Polymerization. ; Polymers. ; Electronic books.
    Description / Table of Contents: It is well known that polymeric and composite materials are finding various applications in some critical areas of human endeavors, such as medicine, medical appliances, energy and the environment. This edition will, hopefully, evoke interest from scientists working in the fields of chemistry, polymer chemistry, electrochemistry and material science. Its applications and uses include: polymer electrolyte membrane fuel cells, sensors, actuators, coatings, electrochromic and electroluminescent materials, magnetic polymers, organo-metallic polymers, tissue engineering, methods of the immobilization of biological molecules, and dental and orthopedic applications. This edition is a highly valuable source for scientists, researchers, upper-level undergraduate and graduate students, as well as college and university professors, because it provides the most up-to-date reference work summarizing the pioneering research work in the field of polymeric and composite materials.
    Type of Medium: Online Resource
    Pages: 1 online resource (372 pages)
    Edition: 1st ed.
    ISBN: 9781629480619
    Series Statement: Polymer Science and Technology
    DDC: 620.192
    Language: English
    Note: Intro -- ADVANCED FUNCTIONAL POLYMERS AND COMPOSITES: MATERIALS, DEVICES AND ALLIED APPLICATIONS. VOLUME 1 -- ADVANCED FUNCTIONAL POLYMERS AND COMPOSITES: MATERIALS, DEVICES AND ALLIED APPLICATIONS. VOLUME 1 -- Library of Congress Cataloging-in-Publication Data -- Dedication -- Contents -- Preface -- Contributors -- About the Editor -- Acknowledgments -- Chapter 1: Advances in Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells -- Abstract -- Abbreviations -- 1. Introduction -- 2. Proton Exchange Membrane Fuel Cells (PEMFCS) -- 2.1. Role of Proton Conducting Membrane in Proton Exchange Membrane Fuel Cells -- 2.2. Requirement for Proton Conducting Membrane for Proton Exchange Membrane Fuel Cells -- 2.3. Current Status of Perfluorinated Sulfonic Acid and Alternative Proton Conducting Membranes -- 2.4. Proton Transport in Sulfonic Acid Membranes -- 2.5. Challenges Facing Sulfonic Acid Membranes in Proton Exchange Membrane Fuel Cells -- 3. High Temperature Polymer Electrolyte -- Membrane Fuel Cell -- 3.1. Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells -- 3.2. Membranes Obtained by Modification with Hygroscopic Inorganic Fillers -- 3.3. Membranes Obtained by Modification with Solid Proton Conductors -- 3.4. Membranes Obtained by Modification with Less Volatile Proton Assisting Solvent -- 3.4.1. Doping with Heterocyclic Solvents -- 3.4.2. Doping with Phosphoric Acid -- 3.4.3. Radiation Grafted and Acid Doped Membranes -- 3.5. Disadvantages of Using Phosphoric Acid Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cell Applications -- 3.6. Alternative Membranes Based on Benzimidazole Derivatives -- 3.7. Alternative Benzimidazole Polymers Doped with Heteropoly Acids -- 3.8. Membrane Impregnated with Ionic Liquids -- 3.9. Summary of Membranes Obtained by Modification of Sulfonic. , Acid Ionomers -- 4. Proton Conduction Mechanism in High Temperature Proton Conducting Membrane -- Conclusion and Prospectives -- Acknowledgments -- References -- Chapter 2: Surface-Confined Ruthenium and Osmium Polypyridyl Complexes as Electrochromic Materials -- Abstract -- Abbreviations -- 1. Introduction -- 1.1. Electrochromic Windows, Displays and Mirrors -- 1.2. Classes of Electrochromic Materials -- 1.3. Metal Complexes As Electrochromic Materials -- 1.3.1. Ruthenium (II) Complexes As Electrochromic Materials -- (I). Optical Behavior of Ruthenium Complexes -- (II). Redox Behavior of Ruthenium Complexes -- (III). Role of Spacers in Dinuclear Ruthenium Complexes -- 1.3.2. Osmium (II) Complexes As Electrochromic Materials -- 1.3.3. Other Metal Complexes As Electrochromic Materials -- 1.4. Substrates Used for Electrochromic Material -- 1.5. Modification of Substrates -- 2. Surface-Confined Ruthenium Complexes -- As Electrochromic Materials -- 2.1. Chemically Adsorbed Ruthenium Complexes -- 2.2. Physically Adsorbed Ruthenium Complexes -- 3. Surface-Confined Osmium Complexes -- As Electrochromic Materials -- 3.1. Osmium Complex-Based Monolayer -- 3.2. Osmium Complex-Based Multilayer -- 4. Surface-Confined Hetero-Metallic -- Complexes As Electrochromic Materials -- 4.1. Coordinative Supramolecular Assembly As Thin Films -- Conclusion -- Acknowledgments -- References -- Chapter 3: Magnetic Polymeric Nanocomposite Materials: Basic Principles Preparations and Microwave Absorption Application -- 1Department of Materials Science, School of Applied Physics, Faculty of Science -- and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia -- 2Institute of Hydrogen Economy, Universiti Teknologi Malaysia, -- Jalan Semarak, Kuala Lumpur, Malaysia -- Abstract -- Abbreviations -- 1. Introduction -- 2. Historical Background. , 3. Interaction Mechanisms of Electromagnetic Wave -- with Materials -- 3.1. Interaction Mechanism with Conductor Materials -- 3.2. Interaction Mechanism with Dielectric Materials -- 3.3. Interaction Mechanism with Magnetic Materials -- 4. The Reason of Using Microwave Absorbing Materials -- 5. The Criteria for Choosing the Filler and the -- Importance of Matching Conditions for Ideal -- Microwave Absorbing Materials -- 5.1. Metal-Backed Single Layer Absorber Mode -- 5.2. Stand-Alone Absorbing Material Model -- 6. Types and Properties of Polymers -- 7. Magnetic Polymer Nanocomposites -- 7.1. Nanomaterials -- 7.2. Magnetic Polymer Nanocomposites' Properties -- 7.3. Magnetic Polymer Nanocomposites' Applications -- 7.4. The Importance of Dispersion in Magnetic Polymer Nanocomposites -- 8. Preparation and Processing of -- Magnetic Polymer Nanocomposites -- 8.1. In-Situ Oxidative Polymerization Method (with Sonication) -- 8.2. One-Step Chemical Method -- 8.3. Surface-Initiated Polymerization Method -- 8.4. Microemulsion Chemical Oxidative Polymerization Method -- 8.5. Reverse Micelle Microemulsion Method -- 8.6. In-Situ Inverse Microemulsion Polymerization -- 8.7. Irradiation Induced Inverse Emulsion Polymerization -- 8.8. Miniemulsion Polymerization -- 8.9. Mechanical Melt Blending Method -- 8.10. Melt Processing Method Using Ultrasonic Bath -- 8.11. Template Free Method -- 8.12. Solution Casting Method -- 8.13. Sonochemical Method -- 8.14. Electrochemical Synthesis -- 9. Electromagnetic Wave Absorption Application of Magnetic Polymer Nanocomposites -- 9.1. The Crucial Role of Magnetic Nanoparticles and Sample Thickness in the Determination of the Microwave Absorption Application -- 9.2. Effect of Magnetic Filler Size on the Microwave Absorption and/or Electromagnetic Interference Shielding Application. , 9.3. Broadening the Microwave Absorption Range for Low and High Frequency Applications Using Binary Magnetic Nanofillers -- 9.4. The Enhancement of the Microwave Absorption for Electromagnetic Interference Shielding Application Using Magnetic and Dielectric Nanofillers -- Conclusion -- References -- Chapter 4: Polyetheramide-Birth of a New Coating Material -- Abstract -- Abbreviations -- 1. Introduction -- 2. Raw Materials and Test Methods -- 3. Linseed Oil Based Polyetheramides[LPEtA] -- 4. Soybean Oil Based Polyetheramides (SPEtA) -- 5. Albizia Lebbek Benth Oil Based PEtA (ABOPEtA) -- 6. Jatropha Seed Oil Based PEtA(JPEtA) -- 6. Olive Oil Based PEtA (OPEtA) -- Conclusion -- Acknowledgments -- References -- [1] Sørensen, P. A., Kiil,S., Dam-Johansen, K. & -- Weinell, C. E. (2009). Anticorrosive coatings: a review, J. Coat. Technol. Res., 6(2), 135-176. -- Chapter 5: Advanced Functional Polymers and Composite Materials and Their Role in Electroluminescent Applications -- Abstract -- Introduction & -- Scope of the Work -- 1. Light Emitting Diodes (LEDs), Characteristics and Categories -- (a) LED- Device Configuration -- (b) Recent Developments in The LED's Technology -- In-organic Light Emitting Diode -- Materials & -- Characteristics -- 3-I. Luminescence and Scintillation from the Inorganic Phosphor Materials -- An Ideal Luminescencent Material's Characteristics -- 3-II. Scintillation -- 3-III. Inorganic Electroluminescent Materials & -- Devices -- Organic Light Emitting Diodes Devices (OELDs) -- 4- (i). OLED Characteristics -- 4-(ii). OLED- Device Configuration & -- Working Principle -- 4-(iii). General Electroluminescent Materials Used for OLED Devices -- 4-(iv). OLED Device Fabrication -- 4-(v). OLED- Electro-Optical (EO) Properties -- 4-(vi). Quantum Efficiency of OLED Devices -- The Classifications of OLED types. , 4-I. An Overview of Historical Background about Polymeric OLEDs -- (P-OLEDs) -- 4-II. Polymeric OLEDs (P-OLEDs) as Electroluminescent Devices -- 4- III. Polymeric OLEDs (P-OLEDs) Employed in Various Device's Applications -- Conclusion -- Acknowledgments -- References -- [1] Akcelrud, L. Prog. Polym. Sci. 28 (2003). 875-962. -- Chapter 6: Poly(Methacrylic Acid) and Poly (Itaconic Acid) Applications as pH-Sensitive Actuators -- Abstract -- Abbreviations -- 1. Introduction -- 2. Methacrylic Acid and Itaconic Acid -Basic Properties -- 2. Poly(methacrylic acid) and Poly(Itaconic Acid) pH-sensitive Polymers -- 2.1. Linear Systems -- 2.2. Hydrogels -- 2.3. Amphiphillic Block and Graft Copolymers (Micelles) -- 2.4. Modified Surfaces and Membranes -- Conclusion -- Acknowledgments -- References -- Chapter 7: Cell Scaffolds and Fabrication Technologies for Tissue Engineering -- Abstract -- Abbreviations -- 1. Introduction -- 2. Cell Based-Therapies for Tissue Engineering -- 3. Scaffolds Preparation Technologies -- 3.1. Nanofibrous -- 3.2. Freeze-Drying -- 3.3. Fiber Bonding -- 3.4. Phase Separation -- 3.5. Gas Foaming -- 3.6. Rapid Prototyping -- 4. Special Applications in Tissue Ingineering -- 4.1. Injectable Matrices for Cell Therapy -- 4.2. Bioceramic Matrices for Cell Therapy -- Conclusion -- Acknowledgments -- References -- Chapter 8: Immobilization of Lipase by Physical Adsorption on Selective Polymers -- Abstract -- Abbreviations -- 1. Introduction -- 2. The Mechanism of Action of Lipases -- 3. Properties of Enzymes Influenced by Immobilization -- 4. Properties of Matrices for Immobilization -- 5. Methods for Enzyme Immobilization -- 5.1. Physical Adsorption -- Advantages and Disadvantages of Enzymes Immobilization Using the Adsorption Technique -- 5.2. Ionic Binding -- 5.3. Covalent Binding. , Advantages and Disadvantages of Enzymes Immobilization Using the Covalent Technique.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...