GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Georg Thieme Verlag KG  (2)
  • 1
    Online Resource
    Online Resource
    Georg Thieme Verlag KG ; 1999
    In:  Thrombosis and Haemostasis Vol. 82, No. 09 ( 1999), p. 1171-1176
    In: Thrombosis and Haemostasis, Georg Thieme Verlag KG, Vol. 82, No. 09 ( 1999), p. 1171-1176
    Abstract: Physical and chemical irritation of the peritoneum through glucose-based hyperosmolar dialysis solutions results in a nonbacterial serositis with fibrinous exudation. Thereby, human peritoneal mesothelial cells (HMC) play an important role in maintaining the balance between the peritoneal generation and degradation of fibrin by expressing the fibrinolytic enzyme tissue-type plasminogen activator (t-PA) as well as the specific plasminogen activator inhibitor-1 (PAI-1). In this study, we analyzed the effect of D-glucose and metabolically inert monosaccharides on the synthesis of t-PA and PAI-1 in cultured HMC. Incubation of HMC with D-glucose or the metabolically inert monosaccharides mannitol and L-glucose (5-90 mM) resulted in a time- and concentration-dependent increase in t-PA mRNA expression and antigen secretion without affecting PAI-1 synthesis. A similar effect was evident when HMC were first exposed sequentially to pooled spent peritoneal dialysis effluent for up to 4 hours, and subsequently incubated for 20 hours in control medium. The stimulating effect of high D-glucose on t-PA expression in HMC was prevented by treating the cells with different protein kinase C (PKC) inhibitors (Ro 31-8220, Gö 6976), but could not be mimicked by the PKC-activating phorbol ester PMA, indicating that this effect of high glucose is dependent on PKC activity, but not mediated through PKC activation. Also, using specific inhibitors (PD 98059, SB 203580) and activators (PMA, anisomycin, IL-1α) of the major routes of the mitogen-activated protein kinases (MAPKs) cascade, we found no evidence for a role of this cascade in regulating t-PA expression in HMC. We conclude that hyperosmolarity induces t-PA (but not PAI-1) in HMC via a regulatory mechanism that requires active PKC, but that does not involve a major pathway in the MAPK cascade.
    Type of Medium: Online Resource
    ISSN: 0340-6245 , 2567-689X
    Language: English
    Publisher: Georg Thieme Verlag KG
    Publication Date: 1999
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Georg Thieme Verlag KG ; 2007
    In:  Thrombosis and Haemostasis Vol. 98, No. 10 ( 2007), p. 813-822
    In: Thrombosis and Haemostasis, Georg Thieme Verlag KG, Vol. 98, No. 10 ( 2007), p. 813-822
    Abstract: Bacterial peritonitis is a serious complication of peritoneal dialysis patients and of patients after abdominal surgery. Especially episodes due to Staphylococcus aureus can harm the peritoneum severely, resulting in peritoneal fibrosis. Human peritoneal mesothelial cells play a critical role in maintaining the integrity of the peritoneum, as they release components of the fibrinolytic system and regulate the influx of immune cells by expressing chemokines and adhesion molecules. Using cultured human peritoneal mesothelial cells (HMCs) and blood mononuclear cells,we analyzed the effect of different staphylococcal strains on mesothelial fibrinolysis and on inflammatory reactions and show that only S. aureus strains with an invasive and hemolytic phenotype decrease the production of fibrinolytic system components, most likely via cell death induction. Furthermore, HMCs react to invading staphylococci by enhanced expression of chemokines and adhesion molecules. Mononuclear cells were activated by all staphylococcal strains tested, and their culture supernatants impaired mesothelial fibrinolysis. Simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, efficiently enhanced the mesothelial fibrinolytic capacity under these inflammatory conditions, but did not protect HMCs against S. aureus-induced cell death. We conclude that only selected S. aureus strains decrease the release of fibrinolytic system components and provoke a mesothelial inflammatory response. These factors most likely contribute to peritoneal fibrosis and might account for the severe clinical presentation of S. aureus peritonitis.
    Type of Medium: Online Resource
    ISSN: 0340-6245 , 2567-689X
    Language: English
    Publisher: Georg Thieme Verlag KG
    Publication Date: 2007
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...