GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-07-10
    Description: We investigate sea level trends and variability as reconstructed from tide gauge data and ocean data assimilations (ODA) over the last 60 years. Tide gauge reconstructions (TGR) are mostly based on statistical approaches using selected EOFs, or trained from variability patterns, from altimetric sea level and tide gauge data to extrapolate regional sea level evolution backward in time. Reconstructions also exist from dynamical ocean modeling approaches with and without data assimilation. We intercompare all results and provide ensemble mean and ensemble spreads to describe estimates of past regional sea level changes and their uncertainties.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Five initialization and ensemble generation methods are investigated with respect to their impact on the prediction skill of the German decadal prediction system "Mittelfristige Klimaprognose" (MiKlip). Among the tested methods, three tackle aspects of model‐consistent initialization using the ensemble Kalman filter (EnKF), the filtered anomaly initialization (FAI) and the initialization method by partially coupled spin‐up (MODINI). The remaining two methods alter the ensemble generation: the ensemble dispersion filter (EDF) corrects each ensemble member with the ensemble mean during model integration. And the bred vectors (BV) perturb the climate state using the fastest growing modes. The new methods are compared against the latest MiKlip system in the low‐resolution configuration (Preop‐LR), which uses lagging the climate state by a few days for ensemble generation and nudging toward ocean and atmosphere reanalyses for initialization. Results show that the tested methods provide an added value for the prediction skill as compared to Preop‐LR in that they improve prediction skill over the eastern and central Pacific and different regions in the North Atlantic Ocean. In this respect, the EnKF and FAI show the most distinct improvements over Preop‐LR for surface temperatures and upper ocean heat content, followed by the BV, the EDF and MODINI. However, no single method exists that is superior to the others with respect to all metrics considered. In particular, all methods affect the Atlantic Meridional Overturning Circulation in different ways, both with respect to the basin‐wide long‐term mean and variability, and with respect to the temporal evolution at the 26° N latitude.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Taylor & Francis
    In:  Tellus A: Dynamic meteorology and oceanography, 54 . pp. 406-425.
    Publication Date: 2016-06-14
    Description: The study investigates perspectives of the parameter estimation problem with the adjoint method in eddy-resolving models. Sensitivity to initial conditions resulting from the chaotic nature of this type of model limits the direct application of the adjoint method by predictability. Prolonging the period of assimilation is accompanied by the appearance of an increasing number of secondary minima of the cost function that prevents the convergence of this method. In the framework of the Lorenz model it is shown that averaged quantities are suitable for describing invariant properties, and that secondary minima are for this type of data transformed into stochastic deviations. An adjoint method suitable for the assimilation of statistical characteristics of data and applicable on time scales beyond the predictability limit is presented. The approach assumes a greater predictability for averaged quantities. The adjoint to a prognostic model for statistical moments is employed for calculating cost function gradients that ignore the fine structure resulting from secondary minima. Coarse resolution versions of eddy-resolving models are used for this purpose. Identical twin experiments are performed with a quasigeostrophic model to evaluate the performance and limitations of this approach in improving models by estimating parameters. The wind stress curl is estimated from a simulated mean stream function. A very simple parameterization scheme for the assimilation of second-order moments is shown to permit the estimation of gradients that perform efficiently in minimizing cost functions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...