GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Geophysical Research Abstracts
    In:  EPIC3EGU 2013, Vienna, Vol. 15, EGU2013-11668, Geophysical Research Abstracts
    Publication Date: 2019-07-17
    Description: Ice shelves are floating ice masses, which are sensitive to climate changes. The main mechanisms for the mass loss of ice shelves around Antarctica are basal melting and calving. For an understanding of the mechanisms of calving the influence of environmental parameters needs to be investigated. We use a fracture mechanical approach to examine the nature and frequency of calving events. Ice responses to load in two ways: on long time scales ice reacts like a viscous fluid, and on short time scale like an elastic solid. As calving is a representation of the solid nature of ice, the elastic response is important and linear elastic fracture mechanics can be applied. However, gravity remains a long time load and hence, a viscous component needs to be taken into account as well. Therefore, we use a Kelvin-Voigt model for analyzing the transient response of an ice shelf to a calving event. In a simplified 2D-model the ice shelf is treated as a rectangular block, in which the gravity force is the only load in a first analysis. The stresses on the surface in the vicinity of the calving front are computed with the finite element software COMSOL. The boundary conditions are the water pressure at the front and bottom of the ice shelf and a constant displacement at the inflow. A stationary state will reappear until eventually the subsequent calving event occurs, the termination time is around 175days. Based on this time interval and the flow velocity of the ice shelf we estimate the calving rate. Different parameter studies reveal the influence of geometry and material parameters on the stresses for an elastic material model. The literature and measurements at the Ekstroem Ice Shelf, East Antarctica, provides the relevant parameter range. Due to the depth-dependent water pressure at the ice front, a bell shaped distribution of stresses on the surface is found. For this reason the location of the maximal stress denotes the most likely position for a calving event and is arranged in between 0.65H and 0.85H, with H the thickness at the ice front. The results of these studies are compared to the results for two cross-sections of measured geometries of the Ekstroem Ice Shelf.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly, Vienna, 2013-04-07-2013-04-12Vol. 15, EGU2013-11822, Geophysical Research Abstracts
    Publication Date: 2019-07-17
    Description: Disintegration events in ice shelves have been the subject of extensive investigations in the past years, however comprehensive explanations applicable to a majority of events are still missing. A popular assumption made by Scambos et al. (2000) [1] links disintegration events to a general thinning of the ice shelf in conjunction with growing melt-water ponds leading to hydro fractures. This explanation seems reasonable for break-up events that happened in Antarctic summers. Large parts of the Wilkins Ice Shelf, however broke-up in fall and winter periods. Therefore, the aim of the present study is to analyse the possibility of frost wedging of water filled surface crevasses in an ice shelf as a source of break-up events. Configurational forces are used to assess crack criticality. The simulations are performed on a 2-dimensional single crack with a mode-I type load, body forces and additional crack-face pressure due to freezing of the water. Depth-dependent density profiles are considered. The relevant parameters, Young’s modulus, Poisson’s ratio and external loading are obtained from literature, remote sensing data analysis and modelling of the ice dynamics. The investigation is performed using the finite element software COMSOL. The simulations show that in comparison to water filled crevasses without ice, thin layers of frozen water may lead to a decreasing criticality at the crack tip as long as the ice ‘bridge’ is allowed to take tensile loads. An increasing crack criticality can be seen for thicker layers of ice. The results are compared to findings from previous finite element analyses of dry and water filled cracks as presented in Plate et al. (2012) [2]. [1] Scambos, T., Hulbe, C., Fahnestock, M., & Bohlander, J. (2000). The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. Journal of Glaciology, 46(154), 516–530. [2] Plate, C., Müller, R., Humbert, A., & Gross, D. (2012). Evaluation of the criticality of cracks in ice shelves using finite element simulations. The Cryosphere, 6(5), 973–984.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly, Vienna, 2013-04-07-2013-04-12Vol. 15, EGU2013-7430, Geophysical Research Abstracts
    Publication Date: 2019-07-17
    Description: The dynamics of the Antarctic Ice Sheet can be well seen and studied on the behavior of Pine Island Glacier. Despite the long time believe in a slow response of the ice sheet to changing atmospheric and oceanic forcing, Pine Island has shown acceleration, thinning and a significant grounding line retreat in the past decades. These ongoing processes are coinciding with a concentrated mass loss in the area around Pine Island Glacier, the Amundsen Sea Embayment. The area is of additional interest due to its retrograde bed slope below the glacier. The postulated instability of the setting turns the glacier into an even more suitable object for modeling studies. Plenty of working groups have conducted modeling studies of Pine Island Glacier with varying model complexity and diverse focuses. We want to add to this by conducting model experiments with a diagnostic 3D full-stokes model of Pine Island Glacier. The model is thermo-mechanically coupled and implemented with the commercial finite-element package COMSOL Multiphysics©. We use remotely sensed surface velocity data to validate our results. The focus of our work lies on the basal properties below the glacier and the connection to sliding behav- ior. We believe that this is a crucial part, as different basal conditions might cause different responses to ongoing changes in the area. Recent studies presented evidence for the existence of a water saturated sediment basin below the main trunk of the glacier. We conduct a variety a numerical experiments with which we test different approaches of combining information about the basal properties with sliding laws.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly, Vienna, 2013-04-07-2013-04-12Vol. 15, EGU2013-9732, Geophysical Research Abstracts
    Publication Date: 2016-12-19
    Description: At the base of a thick ice sheet the temperature locally reaches the pressure melting point and melting generates a thin subglacial water layer. The basal water lubricates the base and thus enhances the sliding of the ice sheet. As a consequence of sliding, the heat source of internal strain heating decreases and the basal ice cools down over time. When frictional heat and heat advection do not counterbalance this, the ice will become frozen to the bedrock again. In addition, strain heating within a temperate ice layer generates a liquid water fraction in the ice, leading to a softer material and enhanced deformation. If the horizontal or vertical advection of cold ice to the base is weak, this positive feedback will lead to a local creep instability. The effect of basal water is thus twofold: it affects the sliding, as well as the rheology and via both ways the ice dynamics. Subglacial water is therefore a crucial component in the dynamic evolution of ice sheets. We present numerical simulations of the present day ice flow using the three-dimensional thermo-coupled full- Stokes model TIM FD 3 on a 2.5 km horizontal grid in the area of the western Dronning Maud Land, Antarc- tica, including the three ice streams Stancomb-Wills, Veststraumen and Plogbreen and the adjacent Brunt and Riiser- Larsen ice shelves. Three different flux routing algorithms for the subglacial meltwater and a modified Weertman-type sliding relation were implemented in the model to account for higher sliding velocities under wet basal conditions. Subsequent to spin-up simulations different sliding simulations considering wet and dry basal conditions were performed. The simulations show a cyclic behaviour on millennial time scale at distinct locations in the model domain. We estimate the distribution of subglacial water based on different flux routing methods and the effect on the ice flow and the basal thermal regime. We further present our analysis of the involved feedback mechanism between ice flow, temperature and rheology, that are related to the simulated cyclic behaviour.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...