GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of China  (2)
  • Oxford University Press  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2024-02-07
    Description: An enigmatic feature of Precambrian continental lithosphere is its long-term stability, which depends on the degree of coupling between the crust and mantle since cratonisation. Earlier studies infer deformation of the lower lithosphere by mantle flow with fast direction of seismic anisotropy being parallel to present plate motion, and/or report anisotropy frozen into the lithospheric mantle. We demonstrate coupled crust-mantle evolution in southern African cratons for more than 2 billion years based on unexpectedly strong crustal azimuthal anisotropy (Thybo et al., 2019). The direction of the fast axis is uniform within tectonic units and parallel to orogenic strike in the Limpopo and Cape fold belts. It is further parallel to the strike of major dyke swarms which indicates that a large part of the observed anisotropy is controlled by lithosphere fabrics and macroscopic effects. Parallel fast axes in the crust and in the mantle indicate coupled crust-mantle evolution. These conclusions have implications for the rheology of the lower lithosphere and the effects of mantle flow on lithosphere deformation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Antarctica has traditionally been considered continental inside the coastline of ice and bedrock. In our recent study (Artemieva and Thybo, 2020) we reconsider the conventional extent of this continent and demonstrate that 1/3 of Antarctica is not a continent. Here we present a brief summary of our results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The seismic receiver function (RF) technique is widely used as an economic method to image earth's deep interior in a large number of seismic experiments. P-wave receiver functions (RFs) constrain crustal thickness and average Vp/Vs in the crust by analysis of the Ps phase and multiples (reflected/converted waves) from the Moho. Regional studies often show significant differences between the Moho depth constrained by RF and by reflection/refraction methods. We compare the results from RF and controlled source seismology for the Baikal Rift Zone by calculating 1480 synthetic RFs for a seismic refraction/reflection velocity model and processing them with two common RF techniques [H–κ and Common Conversion Point (CCP) stacking]. We compare the resulting synthetic RF structure with the velocity model, a density model (derived from gravity and the velocity model), and with observed RFs. Our results demonstrate that the use of different frequency filters, the presence of complex phases from sediments and gradual changes in the properties of crustal layers can lead to erroneous interpretation of RFs and incorrect geological interpretations. We suggest that the interpretation of RFs should be combined with other geophysical methods, in particular in complex tectonic regions and that the long-wavelength Bouguer gravity anomaly signal may provide effective calibration for the determination of the correct Moho depth from RF results. We propose and validate a new automated, efficient method for this calibration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...