GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of America (GSA)  (2)
Document type
Years
  • 1
    Publication Date: 2013-11-22
    Description: Knowledge of regional variations in response to abrupt climatic transitions is essential to understanding the climate system and anticipating future changes. Global climate models typically assume that major climatic changes occur synchronously over continental to hemispheric distances. The last major reorganization of the ocean-atmosphere system in the North Atlantic realm took place during the Younger Dryas (YD), an ~1100 yr cold period at the end of the last glaciation. Within this region, several terrestrial records of the YD show at least two phases, an initial cold phase followed by a second phase of climatic amelioration related to a resumption of North Atlantic overturning. We show that the onset of climatic amelioration during the YD cold period was locally abrupt, but time-transgressive across Europe. Atmospheric proxy signals record the resumption of thermohaline circulation midway through the Younger Dryas, occurring 100 yr before deposition of ash from the Icelandic Vedde eruption in a German varve lake record, and 20 yr after the same isochron in western Norway, 1350 km farther north. Synchronization of two high-resolution continental records, using the Vedde Ash layer (12,140 ± 40 varve yr B.P.), allows us to trace the shifting of the polar front as a major control of regional climate amelioration during the YD in the North Atlantic realm. It is critical that future climate models are able to resolve such small spatial and chronological differences in order to properly encapsulate complex regional responses to global climate change.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-01
    Description: We present a record of extreme spring–summer runoff events for the past 1600 yr preserved in the varved sediments of Lake Mondsee (Austrian Pre-Alps). Combined sediment microfacies analyses and high-resolution micro-X-ray fluorescence element scanning allow us to identify 157 detrital event layers deposited in spring–summer and to discriminate between regional flood and local debris flow deposits. Higher spring–summer flood activity with a mean event recurrence of 3–5 yr occurred in several well-confined multidecadal episodes during the Dark Ages Cold Period and Medieval time (A.D. 450–480, 590–640, 700–750, and 1140–1170) as well as during the early Little Ice Age (LIA; A.D. 1300–1330 and 1480–1520). In contrast, lowest spring–summer flood activity with an event recurrence of only 30–100 yr is observed during the Medieval Climate Anomaly (A.D. 1180–1300) and the coldest interval of the LIA (A.D. 1600–1700). These findings indicate a complex relationship between temperature conditions and extreme hydro-meteorological events and suggest that enhanced summer Mediterranean cyclogenesis triggers large-scale floods in the northeast Alps during climatic transitions. The Lake Mondsee data demonstrate the climatic sensitivity of spring–summer floods and prove the potential of varved sediment records to investigate the impact of changing climate boundary conditions on seasonal flood activity for pre-instrumental time.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...