GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of America (GSA)  (2)
  • Geological Society of London  (2)
  • 1
    Publication Date: 2017-08-04
    Description: Depleted gas reservoirs are potential sites for CO 2 storage; therefore, it is important to evaluate their storage capacity. Historically, there have been difficulties in identifying the reservoir drive mechanism of gas reservoirs using traditional P / z plots, having direct impacts for the estimation of the original gas in place (OGIP) and dependent parameters for both theoretical and effective CO 2 storage capacity estimation. Cole plots have previously provided an alternative method of characterization, being derived from the gas material balance equation. We use production data to evaluate the reservoir drive mechanism in four depleted gas reservoirs (Hewett Lower Bunter, Hewett Upper Bunter, and North and South Morecambe) on the UK Continental Shelf. Cole plots suggest that the North Morecambe and Hewett Upper Bunter reservoirs experience moderate water drive. Accounting for cumulative water influx into these reservoirs, the OGIP decreases by up to 20% compared with estimates from P / z plots. The revised OGIP values increase recovery factors within these reservoirs; hence, geometrically based theoretical storage capacity estimates for the North Morecambe and Hewett Upper Bunter reservoirs increase by 4 and 30%, respectively. Material balance approaches yield more conservative estimates. Effective storage capacity estimates are between 64 and 86% of theoretical estimates within the depletion drive reservoirs, and are 53 – 79% within the water drive reservoirs. Supplementary material: A more detailed description of the aquifer modelling is available at https://doi.org/10.6084/m9.figshare.c.3803770.v1
    Print ISSN: 1354-0793
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-01
    Description: We describe a three-dimensional seismic interpretation approach for identifying the past bases of the methane hydrate stability zone in marine settings. The bases commonly crosscut stratigraphic reflections, and these lines of intersection can be revealed by maps of seismic amplitude. Maps for four reflections that are crosscut by the base of the present-day offshore Mauritania methane hydrate reveal extraordinary curvilinear changes of amplitude that are parallel to one another and extend for as much as ~20 km. They are interpreted as marking the relict intersections of the bases of the hydrate stability zone, and formed by its upward resetting. We hypothesize that this was caused by pulsed sedimentation during repeated glacial-interglacial cycles over the past ~1.25 m.y. Localized deflections in the lines of intersection are indicative of local changes in sediment temperature. This technique could provide a wealth of information on local and regional changes in ambient conditions and better estimates of the volumes of methane being released through time. It therefore should help test for interdependencies between hydrate dissociation and climate change.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-26
    Description: Preliminary dynamic modelling, using TOUGH2/ECO2N, has been carried out to assess the suitability of a site in the UK North Sea for sequestering CO 2 . The potential storage site is a previously unused saline formation within the Permian Rotliegend sandstone. Data regarding the site are limited. Therefore, additional input parameters for the model have been taken from the literature and nearby analogues. The sensitivity of the model to a range of parameters has been tested. Results indicate that the site can sustain an injection rate of around 2.5 Mt a –1 of CO 2 for 20 years. The main control on pressure build-up in the model is the permeability of the unit directly beneath the Rotliegend in the location of the proposed storage site. The plume diameter is primarily controlled by the porosity and permeability of the site. A comparison between static, analytical and dynamic modelling highlights the advantages of dynamic modelling for a study such as this. Further data collection and modelling are required to improve predictions of pressure build-up and CO 2 migration. Despite uncertainties in the input data, the use of a full three-dimensional (3D) numerical simulation has been extremely useful for identifying and prioritizing factors that need further investigation.
    Print ISSN: 1354-0793
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-25
    Description: Marine gas hydrate is the largest carbon reservoir in the global organic carbon cycle, but there is limited knowledge of how hydrate is accreted in space and time. Three-dimensional seismic imaging of the dipping base of the deep-water marine gas hydrate from offshore Mauritania reveals extraordinary patterns of vertical chimneys and connected teardrop-shaped trails of both high and low seismic reflection amplitudes. The high-amplitude trails are interpreted as being caused by the downward transition from hydrate- to free gas–bearing sediments. Their teardrop form shows that gas emanating from the chimneys flowed updip along the base of the hydrate. The geometrically similar, lower-amplitude trails are possibly earlier flows that may have already converted to hydrate. For this area we propose a model of intermittent flow of gas to the base of the hydrate. Active flows were blocked updip by earlier, probably hydrate-clogged chimneys, and may have been laterally confined by flows that had already converted to hydrate that were in their path. The process of hydrate formation reduces sediment permeability and may suppress subsequent gas flows, resulting in the emergence of patterns of gas flow and hydrate accretion.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...