GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of America  (4)
Material
Publisher
  • Geological Society of America  (4)
Language
Years
  • 1
    In: Geology, Geological Society of America, Vol. 49, No. 9 ( 2021-09-01), p. 1032-1037
    Abstract: Large igneous provinces (LIPs) are commonly associated with mass extinctions. However, the precise relations between LIPs and their impacts on biodiversity is enigmatic, given that they can be asynchronous. It has been proposed that the environmental impacts are primarily related to sill emplacement. Therefore, the structure of LIPs' magma storage system is critical because it dictates the occurrence and timing of mass extinction. We use surface-wave tomography to image the lithosphere under the Permian Emeishan large igneous province (ELIP) in southwestern China. We find a northeast-trending zone of high shear-wave velocity (Vs) and negative radial anisotropy (Vsv & gt; Vsh; v and h are vertically and horizontally polarized S waves, respectively) in the crust and lithosphere. We rule out the possibilities of rifting or orogenesis to explain these seismic characteristics and interpret the seismic anomaly as a mafic-ultramafic, dike-dominated magma storage system of the ELIP. We further propose that the anomaly represents a hidden hotspot track that was emplaced before the ELIP eruption. A zone of higher velocity but less-negative radial anisotropy, on the hotspot track but to the northeast of the eruption center in the Panxi region, reflects an elevated proportion of sills emplaced at the incipient stage of the ELIP. Liberation of poisonous gases by the early sill intrusions explains why the mid-Capitanian global biota crisis preceded the peak ELIP eruption by 2–3 m.y.
    Type of Medium: Online Resource
    ISSN: 0091-7613 , 1943-2682
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2021
    detail.hit.zdb_id: 184929-3
    detail.hit.zdb_id: 2041152-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Geological Society of America ; 2021
    In:  Geology Vol. 49, No. 5 ( 2021-05-01), p. 525-530
    In: Geology, Geological Society of America, Vol. 49, No. 5 ( 2021-05-01), p. 525-530
    Abstract: The presence of localized low-velocity anomalies in the upper mantle beneath the passive Atlantic margin in North America is a puzzling geophysical observation. Whether the anomalies are caused by the remnant heat from past hotspots or ongoing asthenospheric upwelling is still debated. We addressed the formation of the anomalies based on a recent velocity model for eastern North America, which reveals new information on their shapes and anisotropic signatures. The low-velocity anomaly in New England appears as a narrow column above 90 km depth and broadens westward at depths of 120–200 km. Two slow anomalies are imaged under the central Appalachian Mountains between 140 km and 240 km. These low velocities correspond to pronounced positive radial anisotropy (Vsh & gt; Vsv), indicating a dominantly horizontal asthenospheric flow. They also coincide with the tracks of the Great Meteor hotspot (140–115 Ma) and an inferred hidden hotspot (60–50 Ma). The anomalies in the central Appalachians could be due to lithospheric interaction with the second hotspot and subsequent lithospheric instabilities. The complex shape of the New England anomaly is consistent with interaction with both hotspots. The first hotspot could have eroded the base of the lithosphere, forming a channel, and the second hotspot could have further thinned the lithosphere and produced a localized cavity at shallow depths. Consequently, the indented lithosphere base would have filled with channelized asthenospheric flow or produced small-scale convection, helping to sustain the slow anomaly. Low-velocity anomalies at the North America passive margin are likely the consequences of prior hotspot interactions.
    Type of Medium: Online Resource
    ISSN: 0091-7613 , 1943-2682
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2021
    detail.hit.zdb_id: 184929-3
    detail.hit.zdb_id: 2041152-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Geological Society of America ; 2016
    In:  Geology Vol. 44, No. 11 ( 2016-11), p. 883-886
    In: Geology, Geological Society of America, Vol. 44, No. 11 ( 2016-11), p. 883-886
    Type of Medium: Online Resource
    ISSN: 0091-7613 , 1943-2682
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2016
    detail.hit.zdb_id: 184929-3
    detail.hit.zdb_id: 2041152-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Geological Society of America ; 2002
    In:  Geology Vol. 30, No. 8 ( 2002), p. 683-
    In: Geology, Geological Society of America, Vol. 30, No. 8 ( 2002), p. 683-
    Type of Medium: Online Resource
    ISSN: 0091-7613
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2002
    detail.hit.zdb_id: 184929-3
    detail.hit.zdb_id: 2041152-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...