GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-10-24
    Description: During opening of a new ocean magma intrudes into the surrounding sedimentary basins. Heat provided by the intrusions matures the host rock creating metamorphic aureoles potentially releasing large amounts of hydrocarbons. These hydrocarbons may migrate to the seafloor in hydrothermal vent complexes in sufficient volumes to trigger global warming, e.g. during the Paleocene Eocene Thermal Maximum (PETM). Mound structures at the top of buried hydrothermal vent complexes observed in seismic data off Norway were previously interpreted as mud volcanoes and the amount of released hydrocarbon was estimated based on this interpretation. Here, we present new geophysical and geochemical data from the Gulf of California suggesting that such mound structures could in fact be edifices constructed by the growth of black-smoker type chimneys rather than mud volcanoes. We have evidence for two buried and one active hydrothermal vent system outside the rift axis. The vent releases several hundred degrees Celsius hot fluids containing abundant methane, mid-ocean-ridge-basalt (MORB)-type helium, and precipitating solids up to 300 m high into the water column. Our observations challenge the idea that methane is emitted slowly from rift-related vents. The association of large amounts of methane with hydrothermal fluids that enter the water column at high pressure and temperature provides an efficient mechanism to transport hydrocarbons into the water column and atmosphere, lending support to the hypothesis that rapid climate change such as during the PETM can be triggered by magmatic intrusions into organic-rich sedimentary basins.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-22
    Description: Summary Deep-seated collapses of volcanic islands have generated the largest volume mass flows worldwide. These mass flows might trigger mega-tsunamis. The way in which these collapse events are emplaced is poorly understood, even though this emplacement process determines the scale of associated tsunamis. Key questions such as whether they are emplaced in single or multiple events, how they may incorporate seafloor sediment to increase their volume, and how they are related to volcanic eruption cycles and migration of volcanic centers, remain to be answered. This project forms a part of the comprehensive study of large volcanic island landslide deposits and is directly linked to IODP drilling campaign in the Lesser Antilles (IODP Leg 340). Unfortunately, Leg 340 only recovered material from a single site within the volcanic landslide deposits off Montserrat, and even at this site, recovery was not continuous. This single IODP site is insufficient to document lateral variation in landslide character, which is critical for understanding how it was emplaced. The main scientific goals of this project are to determine where the landslides are sourced from; to understand how these landslides are emplaced; and to understand the relationship between landslides, eruption cycles and initiation of new volcanic centres. Combining 3D seismology (Leg 1) and MeBo cores (Leg 2) provides a unique dataset of the internal structure, composition and source of material throughout a volcanic island landslide. The results will significantly contribute to understanding the emplacement of volcanic island landslides and they will allow us to assess the associated tsunami risk.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...