GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (884)
  • GSA, Geological Society of America  (4)
  • Springer  (2)
Document type
Keywords
  • 1
    Publication Date: 2019-02-01
    Description: In 1946, megathrust seismicity along the Unimak segment of the Alaska subduction zone generated the largest ever recorded Alaska/Aleutian tsunami. The tsunami severely damaged Pacific islands and coastal areas from Alaska to Antarctica. It is the charter member of “tsunami” earthquakes that produce outsized far-field tsunamis for the recorded magnitude. Its source mechanisms were unconstrained by observations because geophysical data for the Unimak segment were sparse and of low resolution. Reprocessing of legacy geophysical data reveals a deep water, high-angle reverse or splay thrust fault zone that leads megathrust slip upward to the mid-slope terrace seafloor rather than along the plate boundary toward the trench axis. Splay fault uplift elevates the outer mid-slope terrace and its inner area subsides. Multibeam bathymetry along the splay fault zone shows recent but undated seafloor disruption. The structural configuration of the nearby Semidi segment is similar to that of the Unimak segment, portending generation of a future large tsunami directed toward the US West coast.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GSA, Geological Society of America
    In:  Geology, 32 (10). pp. 913-916.
    Publication Date: 2019-09-23
    Description: Erosion by high stress abrasion of convergent margins from horsts and grabens on the subducting plate is not shown in seismic images. In a proposed model, the frontal sediment prism is a dynamic mass that elevates pore-fluid pressure. Overpressured fluid invades fractures in the upper plate and separates fragments that are dragged into a subduction channel along the plate interface. Removed fragments are smaller than surface ship seismic techniques have resolved and beyond the reach of past scientific ocean drilling; however, current drill capability and downhole geophysics can test the model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GSA, Geological Society of America
    In:  Geology, 32 (10). p. 913.
    Publication Date: 2017-08-07
    Description: Erosion by high stress abrasion of convergent margins from horsts and grabens on the subducting plate is not shown in seismic images. In a proposed model, the frontal sediment prism is a dynamic mass that elevates pore-fluid pressure. Overpressured fluid invades fractures in the upper plate and separates fragments that are dragged into a subduction channel along the plate interface. Removed fragments are smaller than surface ship seismic techniques have resolved and beyond the reach of past scientific ocean drilling; however, current drill capability and downhole geophysics can test the model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-13
    Description: On the shelf and upper slope off Peru the signal of coastal upwelling productivity and bottom-water oxygen is well preserved in alternately laminated and bioturbated diatomaceous Quaternary sediments. Global sea-level fluctuations are the ultimate cause for these cyclic facies changes. During late Miocene time, coastal upwelling was about 100 km west of the present centers, along the edge of an emergent structure that subsequently subsided to form the modern slope. The sediments are rich in organic carbon, and intense microbially mediated decomposition of organic matter is evident in sulfate reduction and methanogenesis. These processes are accompanied by the formation of diagenetic carbonates, mostly Ca-rich dolomites and Mg-calcites. The downhole isotopic signatures of these carbonate cements display distinct successions that reflect the vertical evolution of the pore fluid environment. From the association of methane gas hydrates, burial depth, and low-chloride interstitial fluids, we suggest an additional process that could contribute to the characteristic chloride depletion in pore fluids of active margins: release of interlayer water from clays without a mineral phase change. The shelf sediments also contain a subsurface brine that stretches for more than 500 km from north to south over the area drilled. The source of the brine remains uncertain, although the composition of the oxygen isotopes suggests dissolution of evaporites by seawater.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-09-19
    Description: The Chile subduction zone, spanning more than 3500 km, provides a unique setting for studying, along a single plate boundary, the factors that govern tectonic processes at convergent margins. At large scale, the Chile trench is segmented by the subduction of the Chile Rise, an active spreading center, and by the Juan Fernández hot spot ridge. In addition, the extreme climatic change from the Atacama Desert in the north to the glacially influenced southern latitudes produces a dramatic variability in the volume of sediment supplied to the trench. The distribution of sediment along the trench is further influenced by the high relief gradients of the segmented oceanic lithosphere. We interpret new and reprocessed multichannel seismic reflection profiles, and multibeam bathymetric data, to study the variability in tectonic processes along the entire convergent margin. In central and south Chile, where the trench contains thick turbidite infill, accretionary prisms, some 50–60 km wide, have developed. These prisms, however, are ephemeral and can be rapidly removed by high-relief, morphological features on the incoming oceanic plate. Where topographic barriers inhibit the transport of turbidites along the trench, sediment infill abruptly decreases to less than 1 km thick and is confined to a narrow zone at the trench axis. There, all sediment is subducted; the margin is extending by normal faulting and collapsing due to basal tectonic erosion. The transition from accretion to tectonic erosion occurs over short distances (a few tens of km) along the trench. In the turbidite-starved northern Chile trench, ~1 km of slope debris reaches the trench and is subsequently subducted. There, tectonic erosion is causing pronounced steepening of the margin, associated pervasive extension across the slope and into the emerged coastal area, and consequent collapse of the overriding plate. The volume of subducting material varies little along much of the margin. However, the composition of the material varies from slope debris of upper-plate fragments and material removed from the upper plate by basal erosion, to turbidites derived from the Andes.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: A new analysis of Deep Sea Drilling Project (DSDP) Leg 84 data demonstrates that the dominant process controlling the Guatemala margin tectonic evolution since ca. 25 Ma is subduction-erosion. Data from benthic foraminifera, assemblages from upper-slope DSDP Sites 568, 569, and 570 indicate long-term, progressive subsidence from upper to middle bathyal depths (600–1000 m) ca. 19 Ma to modern abyssal depths (〉2000 m). Rapid subsidence migrated landward starting at the Oligocene-Miocene boundary time under the current middle slope, where it increased sharply ca. 19 Ma, reached the current upper slope by ca. 15 Ma, and arrived at the uppermost slope ca. 2 Ma. Subsidence indicates crustal thinning by basal tectonic erosion of mass from the underside of the upper plate. Under the assumption that, in the Miocene, the morphology of the forearc was similar to that of today, landward migration of the trench was at a rate of 0.8–0.9 km/m.y. This linear rate corresponds to a tectonic erosion rate of the submerged forearc of 11.3–13.1 km3·m.y.−1·km−1. The evolution of arc magmatism and superfast spreading at the East Pacific Rise since early Miocene time may have caused slab shallowing and tectonic erosion that readjusted the forearc geometry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: von Huene, Roland (1985): Direct measurement of pore fluid pressure, Leg 84, Guatemala and Costa Rica. In: von Heune, R; Aubouin, J; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 84, 767-772, https://doi.org/10.2973/dsdp.proc.84.133.1985
    Publication Date: 2023-05-12
    Description: Evidence of considerable overpressuring of pore fluids in the sediment drilled during Leg 84 was obtained from direct measurement of pressure by two methods. The first involved measurement of back pressure when the annulus of the drill hole became constricted with unremoved drill cuttings or constriction was caused by plastic inflow of the drill hole walls. The second involved measurement of pressure ahead of the bit in conjunction with in situ water samples and heat flow. All measurements indicated abnormally high pore pressure even in slope deposits of the Middle America Trench off Guatemala.
    Keywords: Deep Sea Drilling Project; DSDP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-27
    Keywords: 84-566; Deep Sea Drilling Project; Demagnetization step; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Leg84; North Pacific; NRM, Declination after demagnetization; NRM, Inclination after demagnetization; NRM, Intensity after demagnetization; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 125 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-27
    Keywords: 84-567A; Deep Sea Drilling Project; Demagnetization step; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Leg84; North Pacific/SLOPE; NRM, Declination after demagnetization; NRM, Inclination after demagnetization; NRM, Intensity after demagnetization; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 415 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-27
    Keywords: 84-569; Deep Sea Drilling Project; Demagnetization step; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Leg84; North Pacific/SLOPE; NRM, Declination after demagnetization; NRM, Inclination after demagnetization; NRM, Intensity after demagnetization; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 160 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...