GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (3)
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 9 ( 2022-5-31)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-5-31)
    Abstract: By analyzing the European Centre for Medium-Range Weather Forecasts reanalysis version 5 (ERA5) dataset, we found increased frequency of marine heatwaves (MHWs) in East Asian marginal seas (EAMS) during the boreal summer (June-July-August) in the recent past. To examine which processes are responsible for the upward trend of MHW occurrence, we performed three numerical simulations using Modular Ocean Model version 5 (MOM5) forced by ERA5 dataset. The first experiment used historical atmospheric variables to force the MOM5 for 1982 to 2020, which reasonably simulated the upward trend of MHWs as well as its dominant variability in terms of temporal and spatial structure in EAMS. The second (third) experiment is the same as in the first except that the atmosphere variables used to force the MOM5 consisted of thermodynamic (dynamic) variables only. The upward trend of MHW occurrence in EAMS is simulated in the first and the second experiment only. We argue that the atmosphere thermodynamic processes, in particular, the shortwave radiative forcing, play a key role in inducing the upward trend of MHW occurrence in EAMS during the boreal summer compared to the ocean dynamic processes.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Climate, Frontiers Media SA, Vol. 4 ( 2022-7-12)
    Abstract: In this study, we define a metric for the intensity of internal climate variability (ICV) based on global surface temperature in the present climate and suggest that it can be used to understand the diversity of projected changes in ENSO amplitude in the future. We analyze both the 35-member Community Earth System Model Large Ensemble and the 30-members from Geophysical Fluid Dynamical Laboratory Large Ensemble from the present climate to future climate. While ENSO amplitude tends to decrease from the present climate to the end of 21st century in some ensemble member with a strong ICV during the present climate, it increases or stays the same in other ensemble members with a weak ICV. The result indicates that the intensity of ICV in the present climate in climate models may cause the difference of ENSO amplitude changes in a warmer world. Therefore, the intensity of ICV in the present climate should be cautiously examined in climate models to correctly project the ENSO amplitude changes in a changing climate.
    Type of Medium: Online Resource
    ISSN: 2624-9553
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2986708-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Marine Science Vol. 10 ( 2023-6-28)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 10 ( 2023-6-28)
    Abstract: The northwestern part of the East/Japan Sea (EJS) is a region with large sea surface temperature (SST) variability and is known as a hotspot of marine heatwaves (MHW) stress for marine environments that peaked in boreal winter (January-February-March). This could have profound impacts on the marine ecosystems over the EJS. Here, we used a set of high-resolution satellite and reanalysis products to systematically analyze the spatiotemporal SST variations and examine their linkage to a large-scale mode of climate variability, such as the Arctic Oscillation (AO). The results show that AO-related wind forcing modulates the SST variability over the EJS via the oceanic dynamic adjustment processes. In particular, the abnormally warm SSTs in the northwestern part of the EJS are driven by the anomalous anticyclonic eddy-like circulation and Ekman downwelling during a positive AO phase. This physical linkage between a positive AO and the abnormally warm SST could be conducive to MHW occurrences in the EJS as in the extremely positive AO event during the winter of 2020. These results have implications that the MHW occurrences in the EJS could be amplified by natural climate variability along with long-term SST warming.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...