GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (4)
Material
Publisher
  • Frontiers Media SA  (4)
Language
Years
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Oncology Vol. 13 ( 2023-6-29)
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 13 ( 2023-6-29)
    Abstract: Bladder cancer has become an increasingly intractable health problem worldwide. Long-term drinking water pollution is known to promote its occurrence. This study aimed to analyze the research status, hot spots, and future trends of drinking water pollution and bladder cancer through extensive bibliometric examination to provide reference data for better prevention and management of bladder cancer. Methods The Scopus database developed by Elsevier was browsed for articles that met the predefined criteria using the search terms related to drinking water and bladder cancer. Included articles were further evaluated by year of publication, subject category, institution, article type, source journal, authors, co-authorship networks, and text mining of titles by R software packages tm, ggplot2 and VOSviewer software. Results In total, 687 articles were selected after a comprehensive literature search by the Scopus database, including 491 research articles, 98 review articles, 26 conference papers, 23 letters and 49 other documents. The total number of articles published showed an upward trend. The United States has the largest number of published articles (345 articles), institutions (7/10) and funding sponsors (top 5). The journal with the most publications was Environmental Health Perspectives , with 46 published. The highest number of citations up to 2330 times for a single article published in 2007 on the journal of Mutation Research . Professor Cantor K.P. was the highest number of publications with 35 articles and Smith A.H. was the most cited author with the number of citations reaching 6987 times overall and 225 times per article. The most frequent keywords excluding the search subject were “arsenic”, “chlorination”, “trihalomethane”, and “disease agents”. Conclusion This study is the first systematic bibliometric study of the literature publications on drinking water pollution and bladder cancer. It offers an overall and intuitive understanding of this topic in the past few years, and points out a clear direction research hotspots and reveals the trends for further in-depth study in future.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Cell and Developmental Biology, Frontiers Media SA, Vol. 12 ( 2024-5-6)
    Abstract: Stem cell spheroid is a promising graft substitute for bone tissue engineering. Spheroids obtained by 3D culture of STRO1+ Gingival Mesenchymal Stem Cells (sGMSCs) (sGMSC spheroids, GS) seldom express angiogenic factors, limiting their angiogenic differentiation in vivo . This study introduced a novel stem cell spheroid with osteogenic and angiogenic potential through 3D co-culture of sGMSCs and Human Umbilical Vein Endothelial Cells (HUVECs) (sGMSC/HUVEC spheroids, GHS). GHS with varying seeding ratios of sGMSCs to HUVECs (GHR) were developed. Cell fusion within the GHS system was observed via immunofluorescence. Calcein-AM/PI staining and chemiluminescence assay indicated cellular viability within the GHS. Furthermore, osteogenic and angiogenic markers, including ALP, OCN, RUNX2, CD31, and VEGFA, were quantified and compared with the control group comprising solely of sGMSCs (GS). Incorporating HUVECs into GHS extended cell viability and stability, initiated the expression of angiogenic factors CD31 and VEGFA, and upregulated the expression of osteogenic factors ALP, OCN, and RUNX2, especially when GHS with a GHR of 1:1. Taken together, GHS, derived from the 3D co-culture of sGMSCs and HUVECs, enhanced osteogenic and angiogenic capacities in vitro , extending the application of cell therapy in bone tissue engineering.
    Type of Medium: Online Resource
    ISSN: 2296-634X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2024
    detail.hit.zdb_id: 2737824-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Medicine, Frontiers Media SA, Vol. 9 ( 2022-5-10)
    Abstract: Reaching areas at altitudes over 2,500–3,000 m above sea level has become increasingly common due to commerce, military deployment, tourism, and entertainment. The high-altitude environment exerts systemic effects on humans that represent a series of compensatory reactions and affects the activity of bone cells. Cellular structures closely related to oxygen-sensing produce corresponding functional changes, resulting in decreased tissue vascularization, declined repair ability of bone defects, and longer healing time. This review focuses on the impact of high-altitude hypoxia on bone defect repair and discusses the possible mechanisms related to ion channels, reactive oxygen species production, mitochondrial function, autophagy, and epigenetics. Based on the key pathogenic mechanisms, potential therapeutic strategies have also been suggested. This review contributes novel insights into the mechanisms of abnormal bone defect repair in hypoxic environments, along with therapeutic applications. We aim to provide a foundation for future targeted, personalized, and precise bone regeneration therapies according to the adaptation of patients to high altitudes.
    Type of Medium: Online Resource
    ISSN: 2296-858X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2775999-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Physiology, Frontiers Media SA, Vol. 12 ( 2021-11-18)
    Abstract: Nowadays, the bone osseointegration in different environments is comparable, but the mechanism is unclear. This study aimed to investigate the osseointegration of different bioactive titanium surfaces under normoxic or high-altitude hypoxic environments. Titanium implants were subjected to one of two surface treatments: (1) sanding, blasting, and acid etching to obtain a rough surface, or (2) extensive polishing to obtain a smooth surface. Changes in the morphology, proliferation, and protein expression of osteoblasts on the rough and smooth surfaces were examined, and bone formation was studied through western blotting and animal-based experiments. Our findings found that a hypoxic environment and rough titanium implant surface promoted the osteogenic differentiation of osteoblasts and activated the JAK1/STAT1/HIF-1α pathway in vitro . The animal study revealed that following implant insertion in tibia of rabbit, bone repair at high altitudes was slower than that at low altitudes (i.e., in plains) after 2weeks; however, bone formation did not differ significantly after 4weeks. The results of our study showed that: (1) The altitude hypoxia environment would affect the early osseointegration of titanium implants while titanium implants with rough surfaces can mitigate the effects of this hypoxic environment on osseointegration, (2) the mechanism may be related to the activation of JAK1/STAT1/HIF-1α pathway, and (3) our results suggest the osteogenesis of titanium implants, such as oral implants, is closely related to the oxygen environment. Clinical doctors, especially dentists, should pay attention to the influence of hypoxia on early osseointegration in patients with high altitude. For example, it is better to choose an implant system with rough implant surface in the oral cavity of patients with tooth loss at high altitude.
    Type of Medium: Online Resource
    ISSN: 1664-042X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2564217-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...