GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (2)
Material
Publisher
  • Frontiers Media SA  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Earth Science Vol. 9 ( 2021-3-26)
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 9 ( 2021-3-26)
    Abstract: The unsaturated zone (UZ) extends across the Earth’s terrestrial surface and is central to many problems related to land and water resource management. Flow of water through the UZ is typically thought to be slow and diffusive, such that it could attenuate fluxes and dampen variability between atmospheric inputs and underlying aquifer systems. This would reduce water resource vulnerability to contaminants and water-related hazards. Reducing or negating that effect, however, spatially concentrated and rapid flow and transport through the unsaturated zone is surprisingly common and becoming more so with the increasing frequency and magnitude of extreme hydroclimatic events. Arising from the wide range in the rates and complex modes of nonlinear flow processes, these effects are among the most poorly characterized hydrologic phenomena. Issues of scale present additional difficulties. Equations representing unsaturated processes have been developed and tested on the basis of field and laboratory measurements typically made at scales from pore size to plot size. In contrast, related problems of significant interest to society, including floods, aquifer recharge, landslides, and groundwater contamination, range from watershed to regional scales. The disparity between the scale of our understanding and the scale of interest for societal problems has spurred application of these model equations at increasingly coarse resolutions over larger areas than can be justified by existing measurements or theory. This mismatch in scales requires an assumption that spatially averaging slow diffusive flow and rapid preferential flow can effectively represent the influence of both processes across vast areas. Given the currently inadequate recognition and quantitative characterization of focused and rapid processes in unsaturated flow, these phenomena are critically in need of expanded attention and effort.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2741235-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Climate Vol. 3 ( 2021-10-4)
    In: Frontiers in Climate, Frontiers Media SA, Vol. 3 ( 2021-10-4)
    Abstract: The spatial distribution and depth of permafrost are changing in response to warming and landscape disturbance across northern Arctic and boreal regions. This alters the infiltration, flow, surface and subsurface distribution, and hydrologic connectivity of inland waters. Such changes in the water cycle consequently alter the source, transport, and biogeochemical cycling of aquatic carbon (C), its role in the production and emission of greenhouse gases, and C delivery to inland waters and the Arctic Ocean. Responses to permafrost thaw across heterogeneous boreal landscapes will be neither spatially uniform nor synchronous, thus giving rise to expressions of low to medium confidence in predicting hydrologic and aquatic C response despite very high confidence in projections of widespread near-surface permafrost disappearance as described in the 2019 Intergovernmental Panel on Climate Change Special Report on the Ocean and Cryosphere in a Changing Climate: Polar Regions. Here, we describe the state of the science regarding mechanisms and factors that influence aquatic C and hydrologic responses to permafrost thaw. Through synthesis of recent topical field and modeling studies and evaluation of influential landscape characteristics, we present a framework for assessing vulnerabilities of northern permafrost landscapes to specific modes of thaw affecting local to regional hydrology and aquatic C biogeochemistry and transport. Lastly, we discuss scaling challenges relevant to model prediction of these impacts in heterogeneous permafrost landscapes.
    Type of Medium: Online Resource
    ISSN: 2624-9553
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2986708-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...