GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (3)
Material
Publisher
  • Frontiers Media SA  (3)
Language
Years
  • 1
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 12 ( 2022-11-7)
    Abstract: Visceral sarcomas are a rare form of soft tissue sarcoma. This study aimed to evaluate the survival and prognostic factors and effective treatments for visceral sarcomas. Methods All patients with visceral sarcoma referred to our center between January 2010 and December 2021 were retrospectively analyzed. The Kaplan-Meier method and a log-rank test were used for survival analysis. Results A total of 53 patients with visceral sarcoma were analyzed in this study with the median age at diagnosis of 57 (range, 24-77) years. Among them, 37 (69.8%) and 16 (30.2%) patients had localized and metastatic diseases at the initial presentation, respectively, and 44 patients underwent surgical resection. The median follow-up, event-free survival (EFS) and overall survival (OS) were 63.0 (range, 2-130), 42.0 months (95% confidence interval [CI] 10.879-73.121) and 45.0 months (95% CI 9.938-80.062), respectively. The 5-year EFS and OS rates were 44% and 46%, respectively. Univariate analysis of prognostic indicators illustrated that metastasis at presentation, surgery, surgical margin and the types of surgery were significantly associated wi th OS and EFS. In this study, combined chemotherapy or radiotherapy had no effects on EFS and OS. Conclusion Primary visceral sarcoma is an uncommon and aggressive malignant tumor with a higher rate of local recurrence. In the largest cohort of visceral sarcomas in China to date, we identified metastases at presentation, surgery, surgical margin, and the types of surgery as independent predictors of survival. The combination of chemotherapy and radiotherapy did not affect survival.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 11 ( 2024-5-22)
    Abstract: Development of environment-friendly and efficient aquaculture effluent treatment system is crucial for sustainable intensification of aquaculture, in the face of the rapidly increasing environmental pressure in the mariculture industry. In this study, mariculture wastewater was treated by the anoxic-anaerobic-oxic biochemical treatment system (A 2 O system) with traditional activated sludge replaced by nitrifying bacteria, denitrification bacteria and phosphorus accumulating bacteria absorbed on PBS carrier biofilms suitable for saline/brackish water. The results showed that biofilm-enhanced A 2 O system can effectively remove pollutants from aquaculture wastewater. The removal efficiencies of COD Mn , NH 4 + -N, TN and TP in A 2 O system were approximately 86.3%-90.8%, 97.7%-99.5%, 94.6%-95.2% and 97.0%-98.1%. The results further showed that COD Mn , NH 4 + -N, and TN were mainly removed in anaerobic tank and anoxic tank, while TP was mainly removed in the anoxic tank and oxic tank. The biofilm-enhanced A 2 O system by adding nitrifying bacteria and phosphorus accumulating bacteria biofilms using PBS as carriers instead of conventional activated sludge could be applied to the treatment of circulating aquaculture wastewater. This study provides a feasible scheme for enhancing the efficiency of A 2 O system in the treatment of aquaculture tail water, and provides a reference for the immobilization of microorganisms.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2024
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2023-1-5)
    Abstract: The circadian rhythm is a physiological phenomenon that occurs in various organisms with a cycle of about 24 hours. Light is one of the important environmental factors affecting biological rhythm. To clarify whether a shift in light spectrum can influence the circadian expression in fish brain, a total of 175 European seabasses [body weight: 32.5 ± 0.71) g; body length: (13.78 ± 0.35) cm] were exposed to white light (WL), red light (RL), yellow light (YL), green light (GL) or blue light (BL). After 50 days of exposure, circadian expressions of four core clock genes ( Clock, Bmal1, Per2, Cry1 ) and Aanat2 gene in brain were examined. The results showed that the temporal expression patterns of positive clock gens ( Clock and Bmal1 ) showed increases during the scotophase and decreases during the photophase, with peaks near the middle of the darkness. Clock gene expression showed a stable circadian rhythm (R 2 = 0.578-0.824, P =0.000- 0.027) in all light groups while Bmal1 showed circadian rhythm in WL, GL and RL, not in BL and YL. Daily expression patterns of the negative clock genes oscillated in the opposite phase from the positive clock genes, showing increasing mRNA levels during the light, decreases during the dark, and peaks near the shift from night to day, except Per2 in RL and Cry1 in BL. Compared with WL, the acrophases of Clock and Bmal1 were delayed under all light treatments (BL: + 3.7h, +6.73h; RL: +2.4h,+1.35h; YL: + 4.94h, 2.00h; GL: +0.05, +0.16h). Cry1 showed advanced acrophase under all light treatments (BL: -10.74 h, GL: -3.81 h, RL: -3.93 h, YL: -7.56 h) but Per2 showed delayed acrophase in all light treatments (GL: +0.86 h, RL: +10.35 h, YL: +9.62 h), except in BL (-0.43 h). The acrophase of Aanat2 was advanced by all monochromatic light, the Aanat2 level was significantly increased in RL compared with other light treatment. Therefore, the results indicate that RL may regulate the expression of Aanat2 gene by affecting the expression of clock gene in fish brain. Spectrum can affect the biological clock system of fish, and unreasonable spectrum may disturb the rhythm of gene expression of biological clock of fish. Under the irradiation of light spectrum, some clock genes still maintain obvious circadian oscillation, while the rhythm of some clock genes is not obvious and may be destroyed. Our findings suggest a primary role of light spectrum information to the fish brain circadian system.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...