GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Spanish Journal of Soil Science, Frontiers Media SA, Vol. 11 ( 2021-03-13)
    Abstract: Increasing food production while avoiding the progressive degradation of agricultural soils has become one of the major challenges at a global level. In consequence, the development of sustainable tillage methodologies or cultivation strategies is an important subject of current research. In fact, it has been observed that the implementation of reduced tillage (RT) vs. traditional tillage (TT) in the long term not only improves soil physicochemical properties but also global soil quality in terms of soil health. In particular, the increase of the soil organic carbon (SOC) content under RT conditions is one of the most important factors, but there is little information about the chemical composition and humification level of this carbon, and thus about its persistence at long-term. This is of particular importance considering the policies of carbon sequestration and climate change mitigation, such as the “4 per 1000” initiative. In this study, molecular-level characterization of the humic acid (HA) and fulvic acid (FA) fractions isolated from a soil after 19 years under RT and TT practices was carried out. This study would provide objective descriptors of the impact of these two tillage practices in the chemical composition of the resulting SOC. With this purpose, the potential of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) for assessing changes in the molecular assemblages released from the humic fractions (HA and FA) was examined. The results showed enhanced diversity and chemical richness (expressed as number of molecular formulas) in the composition of SOC under RT. Different tillage-specific compound classes were associated with both tillage practices. As a whole, the humic fraction showed a higher proportion of molecular formulas for lipid and hydroaromatic families in the case of RT compared to TT, while the same fraction under TT showed a greater richness of oxidized protein-derived formulas than RT. In the case of FAs, a similar pattern was observed for hydroaromatic and protein-derived formulas, but the proportion of molecular formulas assigned to unsaturated lipids was higher in TT than in RT. In addition, increased number of formulas for aromatic and condensed aromatic compounds was observed in FAs under TT respect to RT.
    Type of Medium: Online Resource
    ISSN: 2253-6574
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2700695-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Cellular and Infection Microbiology, Frontiers Media SA, Vol. 13 ( 2023-3-13)
    Abstract: Cellular epigenetic modifications occur in the course of viral infections. We previously documented that hepatitis C virus (HCV) infection of human hepatoma Huh-7.5 cells results in a core protein-mediated decrease of Aurora kinase B (AURKB) activity and phosphorylation of Serine 10 in histone H3 (H3Ser10ph) levels, with an affectation of inflammatory pathways. The possible role of HCV fitness in infection-derived cellular epigenetic modifications is not known. Methods Here we approach this question using HCV populations that display a 2.3-fold increase in general fitness (infectious progeny production), and up to 45-fold increase of the exponential phase of intracellular viral growth rate, relative to the parental HCV population. Results We show that infection resulted in a HCV fitness-dependent, average decrease of the levels of H3Ser10ph, AURKB, and histone H4 tri-methylated at Lysine 20 (H4K20m3) in the infected cell population. Remarkably, the decrease of H4K20m3, which is a hallmark of cellular transformation, was significant upon infection with high fitness HCV but not upon infection with basal fitness virus. Discussion Here we propose two mechanisms ─which are not mutually exclusive─ to explain the effect of high viral fitness: an early advance in the number of infected cells, or larger number of replicating RNA molecules per cell. The implications of introducing HCV fitness as an influence in virus-host interactions, and for the course of liver disease, are warranted. Emphasis is made in the possibility that HCV-mediated hepatocellular carcinoma may be favoured by prolonged HCV infection of a human liver, a situation in which viral fitness is likely to increase.
    Type of Medium: Online Resource
    ISSN: 2235-2988
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2619676-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...