GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (4)
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Energy Research Vol. 10 ( 2022-7-7)
    In: Frontiers in Energy Research, Frontiers Media SA, Vol. 10 ( 2022-7-7)
    Abstract: In this article, a simulation code for tritium diffusion behavior analysis in FeCrAl cladding is developed based on the COMSOL platform. The simulated results are in good agreement with experimental and theoretical results. The effects of different concentrations of tritium and temperature distributions on the diffusion behavior of tritium in FeCrAl cladding were further investigated. Finally, the optimal effect of different coating schemes on the tritium resistance of the FeCrAl cladding was investigated. The results show that higher temperatures lead to higher cladding diffusion coefficients, which will further lead to higher fluxes of tritium into and out of the cladding, which is found to further result in a higher tritium flux into and out of the cladding, as well as shorter tritium diffusion times. It is found that higher temperature will lead to more tritium flux into and out of the cladding and shorter time for the tritium flux to reach a steady state on the right side of the cladding. At the same time, the higher tritium partial pressure on the fuel side of the cladding will lead to a longer time for the tritium flux to reach a steady state on the water side of the cladding. The longer time to reach the steady state on the water side of the cladding increases the tritium flux into the cladding.
    Type of Medium: Online Resource
    ISSN: 2296-598X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2733788-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Pharmacology Vol. 12 ( 2022-2-24)
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 12 ( 2022-2-24)
    Abstract: Rheumatoid arthritis (RA) is a chronic autoimmune disease that is primarily characterized by synovial inflammation. Our previous studies demonstrated that the lymphatic system is critical for the development and maintenance of RA disease, and sufficient lymph drainage helps to improve joint inflammation. In this study, we found that NG-R1, the main active component in the traditional Chinese medicinal herb Sanchi, activating lymphatic function can attenuate synovial inflammation. According to histopathological staining of ankle sections, NG-R1 significantly decreased the area of inflammation and reduced bone destruction of ankle joints in TNF-Tg mice. Near infrared-indocyanine green (NIR-ICG) lymphatic imaging system has shown that NG-R1 significantly improved the lymphatic drainage function. However, the molecular mechanism of its activity is not properly understood. Our in-depth study demonstrates that NG-R1 reduced the inflammatory cytokine production of lymphatic endothelial cells (LECs) stimulated by TNF-α, and the mechanism ameliorated the phosphorylation of IKKα/β and p65, and the translocation of p65 into the nucleus. In summary, this study proved that NG-R1 promoted lymphatic drainage function to ameliorating rheumatoid arthritis in TNF-Tg mice by suppressing NF-κB signaling pathway.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Energy Research Vol. 9 ( 2021-5-11)
    In: Frontiers in Energy Research, Frontiers Media SA, Vol. 9 ( 2021-5-11)
    Abstract: FCM fuel which microencapsulated TRISO particles in SiC matrix is a promising ATF (accident tolerant fuel) candidate fuel designed to replace the traditional pellet-cladding fuel rod. In order to predict the in-pile behavior of FCM fuel accurately and to optimize the design of FCM fuel, it is necessary to establish a numerical simulation method of irradiation-thermal -mechanical coupling behavior of FCM fuel. In this study, the related thermal effects and irradiation effects of FCM fuel and the effect of gap heat transfer are considered. User defined subroutines are compiled respectively, and the above-mentioned correlation effects are introduced into ABAQUS software to establish a numerical simulation method for the irradiation-thermal -mechanical coupling behavior of FCM fuel. Based on the established numerical simulation method, the performance evolution of FCM fuel in the reactor is simulated, and the possible failure modes of FCM fuel in the reactor are analyzed. The research results can provide guidance for the optimization design and performance prediction of FCM fuel.
    Type of Medium: Online Resource
    ISSN: 2296-598X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2733788-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Microbiology Vol. 12 ( 2021-8-25)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 12 ( 2021-8-25)
    Abstract: Vegetation reconstruction and restoration is vital to the health of the mine land ecosystem. Different vegetations might change microbial community structure and function of soil, mediating the biogeochemical cycle and nutrition supply to the soil. To clarify the response of soil microbes to different vegetation reconstruction modes in the mining areas of the Loess Plateau, China, soil microbial community structures and functions were determined by the MiSeq high-throughput sequencing along with PICRUSt2 and FUNGuild tools. The fungal community richness was observed to be the highest in grassland soil and positively correlated with soil organic matter, total nitrogen, and nitrate-nitrogen. The bacterial and fungal community structures were similar in grassland and brushland areas, but were significantly differentiated in the coniferous and broadleaf forest, and the leading factors were soil pH and nitrate-nitrogen. Actinobacteriota, Proteobacteria, and Acidobacteriota were the dominant bacterial phyla under different vegetation reconstruction modes. The dominant phyla of fungi were Ascomycota, Basidiomycota, and Mortierellomycota. Different vegetation reconstruction modes did not affect the bacterial functional communities but shaped different functional groups of fungi. The grassland soil was dominated by saprotrophic fungi, while symbiotrophic fungi dominated the coniferous and broadleaf forests. The results suggested that shifts in vegetation reconstruction modes may alter the mining soil bacterial and fungal community structures and function. These findings improve the understanding of microbial ecology in the reclaimed mine soil and provide a reference for the ecological restoration of fragile mining ecosystems.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...