GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (4)
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Microbiology Vol. 12 ( 2021-6-14)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 12 ( 2021-6-14)
    Abstract: Molecular methods revealed that the majority of microbes in natural environments remains uncultivated. To fully understand the physiological and metabolic characteristics of microbes, however, culturing is still critical for microbial studies. Here, we used bacterial community analysis and four culture media, namely, traditional marine broth 2216 (MB), water extracted matter (WEM), methanol extracted matter (MEM), and starch casein agar (SCA), to investigate the diversity of cultivated bacteria in coastal sediments. A total of 1,036 isolates were obtained in pure culture, and they were classified into five groups, namely, Alphaproteobacteria (52.51%), Gammaproteobacteria (23.26%), Actinobacteria (13.32%), Firmicutes, and Bacteroidetes. Compared to other three media, WEM recovered a high diversity of actinobacteria (42 of 63 genotypes), with Micromonospora and Streptomyces as the most cultivated genera. Amplicon sequencing of the bacterial 16S ribosomal RNA (rRNA) gene V3–V4 fragment revealed eight dominant groups, Alphaproteobacteria (12.81%), Gammaproteobacteria (20.07%), Deltaproteobacteria (12.95%), Chloroflexi (13.09%), Bacteroidetes (8.28%), Actinobacteria (7.34%), Cyanobacteria (6.20%), and Acidobacteria (5.71%). The dominant members affiliated to Actinobacteria belonged to “ Candidatus Actinomarinales,” “ Candidatus Microtrichales,” and Nitriliruptorales. The cultivated actinobacteria accounted for a small proportion ( & lt;5%) compared to the actinobacterial community, which supported that the majority of actinobacteria are still waiting for cultivation. Our study concluded that WEM could be a useful and simple culture medium that enhanced the recovery of culturable actinobacteria from coastal sediments.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Microbiology Vol. 12 ( 2021-8-4)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 12 ( 2021-8-4)
    Abstract: One-carbon (C1) substrates such as methane and methanol have been considered as the next-generation carbon source in industrial biotechnology with the characteristics of low cost, availability, and bioconvertibility. Recently, methanotrophic bacteria naturally capable of converting C1 substrates have drawn attractive attention for their promising applications in C1-based biomanufacturing for the production of chemicals or fuels. Although genetic tools have been explored for metabolically engineered methanotroph construction, there is still a lack of efficient methods for heterologous gene expression in methanotrophs. Here, a rapid and efficient electroporation method with a high transformation efficiency was developed for a robust methanotroph of Methylomicrobium buryatense 5GB1. Based on the homologous recombination and high transformation efficiency, gene deletion and heterologous gene expression can be simultaneously achieved by direct electroporation of PCR-generated linear DNA fragments. In this study, the influence of several key parameters (competent cell preparation, electroporation condition, recovery time, and antibiotic concentration) on the transformation efficiency was investigated for optimum conditions. The maximum electroporation efficiency of 719 ± 22.5 CFU/μg DNA was reached, which presents a 10-fold improvement. By employing this method, an engineered M. buryatense 5GB1 was constructed to biosynthesize isobutyraldehyde by replacing an endogenous fadE gene in the genome with a heterologous kivd gene. This study provides a potential and efficient strategy and method to facilitate the cell factory construction of methanotrophs.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Plant Science Vol. 13 ( 2022-6-9)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 13 ( 2022-6-9)
    Abstract: Potassium (K + ) is one of the indispensable elements in plant growth and development. The Shaker K + channel protein family is involved in plant K + uptake and distribution. Foxtail millet ( Setaria italica ), as an important crop, has strong tolerance and adaptability to abiotic stresses. However, no systematic study focused on the Shaker K + channel family in foxtail millet. Here, ten Shaker K + channel genes in foxtail millet were identified and divided into five groups through phylogenetic analysis. Gene structures, chromosome locations, cis-acting regulatory elements in promoter, and post-translation modification sites of Shaker K + channels were analyzed. In silico analysis of transcript level demonstrated that the expression of Shaker K + channel genes was tissue or developmental stage specific. The transcription levels of Shaker K + channel genes in foxtail millet under different abiotic stresses (cold, heat, NaCl, and PEG) and phytohormones (6-BA, BR, MJ, IAA, NAA, GA3, SA, and ABA) treatments at 0, 12, and 24 h were detected by qRT-PCR. The results showed that SiAKT1 , SiKAT3, SiGORK , and SiSKOR were worth further research due to their significant responses after most treatments. The yeast complementation assay verified the inward K + transport activities of detectable Shaker K + channels. Finally, we found interactions between SiKAT2 and SiSNARE proteins. Compared to research in Arabidopsis, our results showed a difference in SYP121 related Shaker K + channel regulation mechanism in foxtail millet. Our results indicate that Shaker K + channels play important roles in foxtail millet and provide theoretical support for further exploring the K + absorption mechanism of foxtail millet under abiotic stress.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 13 ( 2022-8-8)
    Abstract: Hepatic alveolar echinococcosis (HAE) is a zoonotic parasitic disease caused by the larvae of Echinococcus multilocularis . Because of its characteristics of diffuse infiltration and growth similar to tumors, the disability rate and mortality rate are high among patients. Although surgery (including hepatectomy, liver transplantation, and autologous liver transplantation) is the first choice for the treatment of hepatic alveolar echinococcosis in clinic, drug treatment still plays an important and irreplaceable role in patients with end-stage echinococcosis, including patients with multiple organ metastasis, patients with inferior vena cava invasion, or patients with surgical contraindications, etc. However, Albendazole is the only recommended clinical drug which could exhibit a parasitostatic rather than a parasitocidal effect. Novel drugs are needed but few investment was made in the field because the rarity of the cases. Drug repurposing might be a solution. In this review, FDA-approved drugs that have a potential curative effect on hepatic alveolar echinococcosis in animal models are summarized. Further, nano drug delivery systems boosting the therapeutic effect on hepatic alveolar echinococcosis are also reviewed. Taken together, these might contribute to the development of novel strategy for advanced hepatic alveolar echinococcosis.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...