GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-7-1)
    Abstract: The Clarion Clipperton Zone (CCZ) is a vast area of the central Pacific Ocean where the abyssal seabed is a focus for future polymetallic nodule mining. Broad-scale environmental gradients occur east-to-west across the CCZ seabed, including organic matter supply and nodule abundance, factors that influence benthic faunal community structure and function. A network of protected areas across the CCZ, called Areas of Particular Environmental Interest (APEIs), has been designated to cover this variation. Most previous studies of the benthic environment and megafaunal communities have focussed on the eastern CCZ, leaving the impact of these large-scale gradients unexamined and the network design untested. Seamounts are a further source of heterogeneity in the region. We examined the benthic megafaunal ecology of three APEIs in the western CCZ, spanning a range of environmental conditions. We used a combination of seabed photography and direct sampling to assess the environment and megafauna on the soft sediment habitats on the abyssal plain in three APEIs, and seamounts in two of those APEIs. We found that environmental conditions on abyssal plains differed between the three APEIs in terms of water depth, nodule abundance and coverage, sediment particle size distribution, and estimated organic matter flux. Megafauna were low density and high diversity, with few common morphotypes between sites and many morphotypes being observed only once. Xenophyophores dominated the assemblages. The density and diversity of invertebrates were greater at the sites with lower organic matter inputs and greater nodule abundance. Seamounts in the same APEIs were nodule-free and had coarser sediments than on the plain. Invertebrate megafaunal diversity was lower on the seamounts than on the plains, and most morphotypes recorded on the seamounts were only found on seamounts. Low morphotype overlap also suggests little connectivity between APEIs, and between seamounts and adjacent abyssal plains. Our results provide the first evaluation of the seabed habitats and megafaunal ecology in the western CCZ, highlighting environmental gradients that influence benthic communities, and are important for evaluating the design of the network of protected areas.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 8 ( 2017-09-08)
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2017
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Ecology and Evolution, Frontiers Media SA, Vol. 11 ( 2023-7-27)
    Abstract: Trait-based approaches that complement taxonomy-based studies have increased in popularity among the scientific community over the last decades. The collection of biological and ecological characteristics of species (i.e., traits) provides insight into species and ecosystem vulnerability to environmental and anthropogenic changes, as well as ecosystem functioning. Here, we present the FUN Azores trait database, describe our approach, evaluate its scope, compare it to other marine trait databases, and explore the spatial distribution of its traits with “functional maps.” While most of the available trait databases to date contain essential information to understand the functional diversity of a taxonomic or functional group, our ecosystem-based approach provides a comprehensive assessment of diverse fauna (i.e., meio-, macro-, and megafauna) from benthic and pelagic environments in the Azores Marine Park; including ridges, seamounts, hydrothermal vents, and the overlying water column. We used a collaborative approach involving 30 researchers with different expertise to develop the FUN Azores database, which contains compiled data on 14 traits representing morphological, behavioral, and life history characteristics for 1,210 species across 10 phyla. The “functional maps” show a distinct distribution of the two most common size classes, suggesting different communities with different functionalities. The following traits had the best scoring coverage (i.e., & gt;95% of the species scored): maximum body size, body form, skeleton material, feeding structure, motility, environmental position, substratum affinity, distribution, and depth range; while traits related to species behavior (e.g., sociability or aggregation tendencies) and life history (e.g., developmental mechanism) had lower scoring coverage, highlighting the need for further research to fill these knowledge gaps. We found a larger number of species in the benthic compared to the pelagic environment and differing species composition between areas within the Azores Marine Park resulting from varying biodiversity, ecosystem types, sampling effort, and methodologies used. The FUN Azores database will foster and facilitate trait-based approaches in the area, develop a framework for expansion of cross-ecosystem and cross-taxa trait databases elsewhere, and improve our ecological understanding of the Azores Marine Park and its conservation requirements.
    Type of Medium: Online Resource
    ISSN: 2296-701X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2745634-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2023-1-24)
    Abstract: The abyssal plains are vast areas without large scale relief that occupy much of the ocean floor. Although long considered relatively featureless, they are now known to display substantial biological heterogeneity across different spatial scales. Ecological research in these regions benefits increasingly from non-destructive visual sampling of epifaunal organisms with imaging technology. We analysed images from ultra-high-definition towed camera transects at depths of around 3500 m across three stations (100–130 km apart) in the Bering Sea, to ask whether the density and distribution of visible epifauna indicated any substantial heterogeneity. We identified 71 different megafaunal taxa, of which 24 occurred at only one station. Measurements of the two most abundant faunal elements, the holothurian Elpidia minutissima and two xenophyophores morphotypes (the more common identifiable as Syringammina limosa ), indicated significant differences in local densities and patchy aggregations that were strikingly dissimilar among stations. One station was dominated by xenophyophores, one was relatively depauperate in both target taxa as well as other identified megafauna, and the third station was dominated by Elpidia . This is an unexpected level of variation within comparable transects in a well-mixed oceanic basin, reinforcing the emerging view that abyssal habitats encompass biological heterogeneity at similar spatial scales to terrestrial continental realms.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Marine Science Vol. 9 ( 2023-1-24)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2023-1-24)
    Abstract: Benthic foraminifera cannot be sampled adequately using a single device. Smaller taxa are best collected using multicorers, the larger with box corers, but towed devices (dredges, trawls and epibenthic sledges) also retain many larger species. Here, we describe macrofaunal ( & gt;300 µm) foraminiferal assemblages obtained using an epibenthic sledge (EBS) in the Clarion-Clipperton Zone (eastern equatorial Pacific), a region hosting seafloor deposits of polymetallic nodules. Twelve EBS samples were collected in four areas licenced for exploration by the International Seabed Authority (ISA) to German, IOM, Belgium and French contractors, and to APEI-3, one of the protected Areas of Special Scientific Interest designated by the ISA. We recognised 280 morphospecies among 1954 specimens, with between 74 (IOM) and 121 (Belgium) in particular areas. Most (92.7%) were single-chambered monothalamids, of which 75 species (26.8%) belonged to the Komokioidea (‘komoki’), 47 (16.8%) to branched and unbranched tubes, 33 (11.8%) to chain-like and 32 (11.4%) to various ‘komoki-like’ forms. Fragments of megafaunal xenophyophores represented 21 species (7.50%), including Spiculammina delicata , previously reported only from the Russian area. Rarefaction curves and sample coverage completeness curves suggest that only a fraction of the macrofaunal foraminiferal diversity had been sampled. The occurrence of 71.8% of species in 1-2 of the 12 samples and 84.9% in 1-3 of the samples was a likely result of substantial undersampling. Dissimilarity in species composition between areas was very high: 64.2% (German vs IOM area) to 86.9% (German area vs APEI-3). Similarity within a single area was quite low: 29.1% (German) to 45.1% (IOM). In multidimensional scaling (MDS) plots, the APEI-3 area was clearly distinct in terms of faunal composition from all other areas, the French area somewhat separated from the German, IOM and Belgium areas, with the German and IOM samples being the most similar. These patterns may reflect the geographical separation of the French and APEI-3 areas and their location in deeper, more oligotrophic waters. Our study demonstrates that EBS samples from the eastern CCZ are a rich source of novel foraminiferal taxa, particularly light, easily resuspended komoki, providing a valuable perspective on foraminiferal biodiversity.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Frontiers Media SA ; 2019
    In:  Frontiers in Marine Science Vol. 6 ( 2019-4-2)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 6 ( 2019-4-2)
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2019
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 3 ( 2016-06-14)
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2016
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-6-28)
    Abstract: Benthic foraminiferal research in the North Pacific has a long history, with works published over a century ago providing important information about the taxonomy and distribution of morphospecies. These studies focused mainly on areas outside the Clarion-Clipperton Zone (CCZ). Our knowledge of foraminiferal faunas within the CCZ originates largely from recent baseline investigations related to likely future seabed mining of the polymetallic nodule deposits. These have revealed highly diverse assemblages of sediment-dwelling morphospecies among the meiofauna and macrofauna, as well as megafaunal xenophyophores and nodule-attached fauna. Morphological analyses have been complemented by metabarcoding studies that yielded even higher numbers of molecular species (Operational Taxonomic Units - OTUs). Monothalamids, the vast majority undescribed, constitute a substantial proportion of both morphological and molecular datasets, with multichambered agglutinated and calcareous foraminifera being less common. Their importance in this abyssal ( & gt;4,000 m depth) habitat likely reflects food limitation combined with carbonate dissolution close to and below the carbonate compensation depth. Literature records, supported in a few cases by genetic data, suggest that many morphospecies found in the CCZ have wide geographical distributions across the Pacific abyss and in other oceans. At smaller spatial scales (several 100s of kilometers) there is a general uniformity in assemblage composition. Nevertheless, many morphospecies are too rare to conclude anything about their geographical distributions. Similarly, the part played by benthic foraminifera in CCZ ecosystems is largely a matter of speculation, although their abundance across different size classes suggests that it is significant. Meiofauna-sized taxa that consume freshly-deposited organic detritus may be important in carbon cycling, particularly at the shallower, more eutrophic eastern end of the CCZ. Megafaunal xenophyophores can provide habitat structure for other organisms, potentially enhancing benthic biodiversity. Foraminifera of all sizes could be among the earliest recolonisers of disturbed or redeposited sediments. Their potential contributions in terms of both ecology and biodiversity make these protists significant members of benthic communities in the CCZ.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...