GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (3)
Material
Publisher
  • Frontiers Media SA  (3)
Language
Years
FID
  • 1
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 12 ( 2021-6-3)
    Abstract: Background: Population-based studies have consistently showed an increased incidence of coronary heart disease and cardiac mortality in patients with type 2 diabetes mellitus (T2DM). Tongmai Jiangtang capsules (TJC) are Chinese patent medicines that have been approved in China for the treatment of diabetic vascular complications. However, the evidence supporting the efficacy of Tongmai Jiangtang capsules in type 2 diabetic coronary heart disease (T2DM-CHD) remains unclear. Herein, we designed a randomized, parallel-controlled clinical trial to investigate a new complementary therapy for T2DM-CHD patients. Methods: A total of 360 T2DM-CHD subjects (aged 18–75 years) will be randomly assigned to the TJC group or the placebo group at a 2:1 ratio. On the basis of western medicine therapy, all the participants will receive TJC or placebo, orally, three capsules/treatment, three per day for 12 weeks. The primary outcomes will be assessed according to the Canadian Cardiovascular Society (CCS) classification. All statistical analyses will be performed setting a two-sided 0.05 significance level, using SAS 9.4 statistical software. Discussion: The efficacy of TJC for the treatment of T2DM-CHD patients will be evaluated. The study will provide reliable clinical research evidence for application of TJC in treating T2DM-CHD patients. Clinical Trial Registration: https://www.chictr.org.cn/enIndex.aspx , Chinese Clinical Trial Registry ChiCTR2000037491.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 9 ( 2022-12-21)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-12-21)
    Abstract: The neurotoxin β - N -methylamino- L -alanine (BMAA) produced by cyanobacteria and diatoms can accumulate in diverse aquatic organisms through the food web. In the present study, embryos of mussel Mytilus galloprovincialis (Lamarck, 1819), oyster Magallana gigas (Thunberg, 1793), and marine medaka Oryzias melastigma (McClelland, 1839) were exposed to BMAA dissolved in seawater and monitored for early developmental effects. Results demonstrated that the embryonic development of mussels and oysters were significantly inhibited when BMAA concentrations were above 100 μg BMAA·HCl/L (0.65 µM) and 800 μg BMAA·HCl/L (5.18 µM), respectively. The shell growth of mussel embryos was also markedly inhibited by BMAA ≥ 100 μg BMAA·HCl/L (0.65 µM). Based on the dose-response curves related to the modified malformation rate of embryos, the median effective concentration (EC 50 ) values of mussel (48 h) and oyster (24 h) embryos were 196 μg BMAA·HCl/L (1.27 µM) and 1660 μg BMAA·HCl/L (10.7 μM), respectively. A sustained and dose-dependent decrease in heart rate was apparent in marine medaka embryos at 9-days post fertilization following BMAA exposure. However, no obvious effect on ATP concentration was noted in these marine medaka embryos. The current study contributes to our understanding of the sublethal effects of BMAA on the early embryonic development of marine bivalves and medaka. Further research examining the long-term effects of BMAA on the early development of marine organisms is necessary to determine seawater quality criteria for protection.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Veterinary Science, Frontiers Media SA, Vol. 9 ( 2022-7-26)
    Abstract: Cadmium (Cd) is known as a highly toxic heavy metal and has been reported to induce hepatotoxicity in animals. Nano-selenium (NSe) is an antioxidant that plays many biological roles such as oxidative stress alleviation. The purpose of this study is to explore the mechanism of action by which NSe inhibits Cd-induced hepatic toxicity and oxidative stress. Sixty eight-week-old male Kunming mice were randomly divided into four groups (15 mice per group). The control group and cadmium groups received distilled water, whereas the sodium-selenite group received 0.2 mg/kg SSe and the NSe group received 0.2 mg/kg NSe intragastrically for 2 weeks. On the last day, all the other groups were treated with Cd (126 mg/kg) except for the control group. The results obtained in this study showed that NSe alleviated Cd-induced hepatic pathological changes. Furthermore, NSe reduced the activities of ALT and AST as well as the content of MDA, while elevated the activities of T-AOC, T-SOD and GSH ( P & lt; 0.05). In addition, the NSe group significantly increased mRNA expressions of Nrf2 pathway related molecules (Nrf2, HO-1, NQO-1, GST, GSH-Px, CAT and SOD) compared to the Cd group ( P & lt; 0.05). In conclusion, NSe shows its potentiality to reduce Cd-induced liver injury by inhibiting oxidative stress and activating the Nrf2 pathway.
    Type of Medium: Online Resource
    ISSN: 2297-1769
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2834243-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...