GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 12 ( 2021-6-16)
    Abstract: Snow algae are an important group of terrestrial photosynthetic organisms in Antarctica, where they mostly grow in low lying coastal snow fields. Reliable observations of Antarctic snow algae are difficult owing to the transient nature of their blooms and the logistics involved to travel and work there. Previous studies have used Sentinel 2 satellite imagery to detect and monitor snow algal blooms remotely, but were limited by the coarse spatial resolution and difficulties detecting red blooms. Here, for the first time, we use high-resolution WorldView multispectral satellite imagery to study Antarctic snow algal blooms in detail, tracking the growth of red and green blooms throughout the summer. Our remote sensing approach was developed alongside two Antarctic field seasons, where field spectroscopy was used to build a detection model capable of estimating cell density. Global Positioning System (GPS) tagging of blooms and in situ life cycle analysis was used to validate and verify our model output. WorldView imagery was then used successfully to identify red and green snow algae on Anchorage Island (Ryder Bay, 67°S), estimating peak coverage to be 9.48 × 10 4 and 6.26 × 10 4 m 2 , respectively. Combined, this was greater than terrestrial vegetation area coverage for the island, measured using a normalized difference vegetation index. Green snow algae had greater cell density and average layer thickness than red blooms (6.0 × 10 4 vs. 4.3 × 10 4 cells ml −1 ) and so for Anchorage Island we estimated that green algae dry biomass was over three times that of red algae (567 vs. 180 kg, respectively). Because the high spatial resolution of the WorldView imagery and its ability to detect red blooms, calculated snow algal area was 17.5 times greater than estimated with Sentinel 2 imagery. This highlights a scaling problem of using coarse resolution imagery and suggests snow algal contribution to net primary productivity on Antarctica may be far greater than previously recognized.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Marine Science Vol. 8 ( 2021-11-18)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-11-18)
    Abstract: The study of cetacean strandings was globally recognised as a priority topic at the 2019 World Marine Mammal Conference, in recognition of its importance for understanding the threats to cetacean communities and, more broadly, the threats to ecosystem and human health. Rising multifaceted anthropogenic and environmental threats across the globe, as well as whale population recovery from exploitation in some areas, are likely to coincide with an increase in reported strandings. However, the current methods to monitor strandings are inherently biased towards populated coastlines, highlighting the need for additional surveying tools in remote regions. Very High Resolution (VHR) satellite imagery offers the prospect of upscaling monitoring of mass strandings in minimally populated/unpopulated and inaccessible areas, over broad spatial and temporal scales, supporting and informing intervention on the ground, and can be used to retrospectively analyse historical stranding events. Here we (1) compile global strandings information to identify the current data gaps; (2) discuss the opportunities and challenges of using VHR satellite imagery to monitor strandings using the case study of the largest known baleen whale mass stranding event (3) consider where satellites hold the greatest potential for monitoring strandings remotely and; (4) outline a roadmap for satellite monitoring. To utilise this platform to monitor mass strandings over global scales, considerable technical, practical and environmental challenges need to be addressed and there needs to be inclusivity in opportunity from the onset, through knowledge sharing and equality of access to imagery.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...