GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (4)
  • 1
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 10 ( 2023-1-12)
    Abstract: Tibetan Plateau (TP) is strongly impacted by accelerated anthropogenic warming that already exceeds natural variability. However, the spatial differences in climate and ecosystem response in TP between anthropogenic and natural forcings are unclear. Here, the Köppen–Trewartha climate classification is applied to examine the shifts in terrestrial climate regimes and vegetation distribution in TP by analyzing the WorldClim high-resolution downscaled climate dataset for the mid-Holocene (MH, ∼6 cal ka BP), the present-day (PD, 1960–1990), and in the future (2050s) under the Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios. The results show that the polar climate and the dry climate occupied more than 70% of TP area in the three periods. The MH, dominated by the natural forcing, is featured as having less distribution of dry climate than the PD. The anthropogenic change will promote a transition from a cold climate type to a warmer climate type in the 2050s. The precipitation change is responsible for the differences in climate types between the MH and PD, while warming dominates the evolution of climate types across TP in the 2050s. Moreover, vegetation types can be represented by major climate types in a large proportion of TP. In particular, polar climate regions correspond well to the areas of meadows, and the dry climate regions correspond to the steppes and deserts areas. The large changes in the climate regimes of TP suggest an extensive (shrinking) area of meadows (steppes) under natural forcing and a shrinking area of meadows under anthropogenic warming.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2741235-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Ecology and Evolution Vol. 11 ( 2023-5-5)
    In: Frontiers in Ecology and Evolution, Frontiers Media SA, Vol. 11 ( 2023-5-5)
    Abstract: Historical legacies influence present-day ecosystem composition and dynamics. It is therefore important to understand the long-term dynamics of ecosystems and their properties. Analysis of ecosystem properties during the Holocene using fossil pollen assemblages provides valuable insights into past ecosystem dynamics by summarising so-called pollen-assemblage properties (PAPs). Using 205 fossil pollen data-sets (records), we quantify eight PAPs [pollen-taxonomic richness, diversity, evenness, pollen-compositional turnover, pollen-compositional change, and rate of pollen-compositional change (RoC)] for the Asian continent at different spatial scales (in individual records, within and across climate-zones, and within the continent) and time (temporal patterns over the past 12,000 years). Regression tree (RT) partitioning of the PAP-estimates using sample-age as a sole predictor revealed the “change-point(s)” (time or sample-age of major change in a PAP). We estimated the density of RT and multivariate regression tree (MRT) change-points in 1,000-year time bins during the Holocene. Pollen-compositional turnover (range of sample scores along the first DCCA axis) and change (number of MRT partitions) in each record reveal gradual spatial variation across latitude and a decline with longitude eastward. Temporally, compositional turnover declines linearly throughout the Holocene at all spatial scales. Other PAPs are heterogeneous across and within spatial scales, being more detectable at coarser scales. RT and MRT change-point density is broadly consistent in climate-zones and the continent, increasing from the early- to mid-Holocene, and mostly decrease from the mid-Holocene to the present for all PAPs. The heterogenous patterns in PAPs across the scales of study most likely reflect responses to variations in regional environmental conditions, anthropogenic land-use, and their interactions over space and time. Patterns at the climate-zone and continental scales indicate a gradual but congruent decline in major PAPs such as compositional turnover, rate of compositional change, and major temporal compositional changes (MRT) during the Holocene, especially during recent millennia, suggesting that vegetation in Asia has become progressively more homogenous. Data properties (e.g., spatial distribution of the records, distribution of samples within the records, and data-standardisation and analytical approaches) may also have partly influenced the results. It is critically important to evaluate the data properties and the approaches to data standardisation and summarisation.
    Type of Medium: Online Resource
    ISSN: 2296-701X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2745634-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Microbiology Vol. 13 ( 2022-11-3)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 13 ( 2022-11-3)
    Abstract: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease, which is caused by severe fever with thrombocytopenia syndrome virus (SFTSV). The disease results in high mortality and increased morbidity and threatens global public health. Rapid detection of SFTSV is crucial for epidemic prevention in low-resource settings. Here we developed deployable, sensitive and rapid detection methods based on CRISPR/Cas12a or Cas13a technologies. The CRISPR/Cas12a-based detection assay could stably detect the SFTSV L or M genes at 10 cp/μl. The Cas13a-based method could detect the L gene as low as 0.75 cp/μl. For point-of-care testing, we combined fluorescence visualization and lateral flow detection with CRISPR/Cas-based assays. Furthermore, using the orthogonal DNA/RNA collateral activity of the Cas12a/Cas13a system, we present the dual-gene detection platform for SFTSV, which can simultaneously detect the L and M genes in a single tube. Based on the dual-gene detection, we designed multiplexed test strips to detect SFTSV. All our methods were initially validated using 52 clinical samples, showing 100% sensitivity and specificity. These new CRISPR/Cas-based detection methods are promising candidates for on-site detection of SFTSV.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2013
    In:  Frontiers in Microbiology Vol. 4 ( 2013)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 4 ( 2013)
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2013
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...