GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Veterinary Science, Frontiers Media SA, Vol. 8 ( 2022-2-3)
    Abstract: Past studies suggested that during early lactation and the transition period, higher plasma growth hormone (GH) levels in subclinical ketosis (SCK) might involve the initiation of body adipose tissues mobilization, resulting in metabolic disorders in ruminants particularly hyperketonemia. The upregulated GH mRNA expression in adipose tissue may take part in the adipolysis process in SCK-affected cows that paves a way for study further. This study aimed to characterize the plasma levels of GH, β-hydroxybutyrate acid (BHBA) and non-esterified fatty acid (NEFA) and glucose (GLu) in ketotic cows and healthy control (CON) cows; to measure the liver function test (LFT) indices in ketotic and healthy CON cows, and finally the quantitative real-time PCR (qRT-PCR) assay of candidate genes expressed in adipose tissues of ketotic and healthy CON cows during 0 to 7 week postpartum. Three experiments were conducted. Experiment-1 involved 21 Holstein cows weighing 500–600 kg with 2–5 parities. Results showed that GH, BHBA, and NEFA levels in ketotic cows were significantly higher and the GLu level significantly lower. Pearson's correlation analysis revealed a significant positive correlation of GH with BHBA, NEFA, and GLu in ketotic and healthy CON cows. In experiment-2, dynamic monitoring of LFT indices namely, alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL), total protein (TP), albumin (ALB), globulin (GLOB) and albumin/globulin (A/G) were examined. The TBIL, DBIL, and GGT indices were significantly higher in ketotic cows and TP was significantly lower. In experiment-3, mRNA expression levels of GHR and peroxisome-proliferator-activated receptor alpha (PPARα) genes in adipose tissue were significantly upregulated in ketotic cows. However, the mRNA expression of insulin-like growth factor-I (IGF-1), insulin-like growth factor-I receptor (IGF-1R), and sterol regulatory element-binding protein-1c (SREBP-1c) genes in adipose tissue were downregulated in ketotic cows. Our study concluded that during postpartum, higher plasma GH levels in SCK cows might involve the initiation of body adipose tissue mobilization, resulting in hyperketonemia.
    Type of Medium: Online Resource
    ISSN: 2297-1769
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2834243-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Genetics, Frontiers Media SA, Vol. 13 ( 2022-8-24)
    Abstract: Common bean is considered a recalcitrant crop for in vitro regeneration and needs a repeatable and efficient in vitro regeneration protocol for its improvement through biotechnological approaches. In this study, the establishment of efficient and reproducible in vitro regeneration followed by predicting and optimizing through machine learning (ML) models, such as artificial neural network algorithms, was performed. Mature embryos of common bean were pretreated with 5, 10, and 20 mg/L benzylaminopurine (BAP) for 20 days followed by isolation of plumular apice for in vitro regeneration and cultured on a post-treatment medium containing 0.25, 0.50, 1.0, and 1.50 mg/L BAP for 8 weeks. Plumular apice explants pretreated with 20 mg/L BAP exerted a negative impact and resulted in minimum shoot regeneration frequency and shoot count, but produced longer shoots. All output variables (shoot regeneration frequency, shoot counts, and shoot length) increased significantly with the enhancement of BAP concentration in the post-treatment medium. Interaction of the pretreatment × post-treatment medium revealed the need for a specific combination for inducing a high shoot regeneration frequency. Higher shoot count and shoot length were achieved from the interaction of 5 mg/L BAP × 1.00 mg/L BAP followed by 10 mg/L BAP × 1.50 mg/L BAP and 20 mg/L BAP × 1.50 mg/L BAP. The evaluation of data through ML models revealed that R 2 values ranged from 0.32 to 0.58 (regeneration), 0.01 to 0.22 (shoot counts), and 0.18 to 0.48 (shoot length). On the other hand, the mean squared error values ranged from 0.0596 to 0.0965 for shoot regeneration, 0.0327 to 0.0412 for shoot count, and 0.0258 to 0.0404 for shoot length from all ML models. Among the utilized models, the multilayer perceptron model provided a better prediction and optimization for all output variables, compared to other models. The achieved results can be employed for the prediction and optimization of plant tissue culture protocols used for biotechnological approaches in a breeding program of common beans.
    Type of Medium: Online Resource
    ISSN: 1664-8021
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606823-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 13 ( 2022-7-28)
    Abstract: Cultivated sunflower holds a very narrow genetic base and the efficient utilization of available genetic diversity is very important for a successful breeding program. In the present study, 109 sunflower genotypes were assessed for diversity paneling through a combined approach of morphological and molecular markers analysis. Morphological parameters including days to flower initiation, days to flower completion, plant height, stem curvature, number of leaves per plant, leaf area, head diameter, hundred seed weight, and seed yield per plant were studied. Simple sequence repeats (40 DNA markers) were deployed for diversity profiling. Data were analyzed by both univariate and multivariate statistics. SD and coefficient of variation confirm the presence of significant amounts of genetic variation for all the morphological parameters. Cluster Analysis and Principal Component Analysis further confirm the presence of distinct grouping patterns in the studied material. Cluster analysis of both morphological and molecular analysis revealed that restorer lines tend to group separately from A, B, and open-pollinated lines. Further grouping, at the sub-cluster level, revealed six distinct sub-clusters in each of the two major clusters. In total, 12 genotypes, 6 CMS lines (CMS-HAP-12, CMS-HAP-54, CMS-HAP-56, CMS-HAP-99, CMS-HAP-111, and CMS-HAP-112) and 6 restorer lines (RHP-38, RHP-41, RHP-53, RHP-68, RHP-69, and RHP-71) could be used as potential parents for hybrid development. As genotypes of similar genetic backgrounds tend to group closer, it is deduced that one genotype with the highest seed yield per plant could be used for further hybrid breeding programs in sunflowers.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 14 ( 2023-6-9)
    Abstract: The human intestinal microbiota, also known as the gut microbiota, comprises more than 100 trillion organisms, mainly bacteria. This number exceeds the host body cells by a factor of ten. The gastrointestinal tract, which houses 60%–80% of the host’s immune cells, is one of the largest immune organs. It maintains systemic immune homeostasis in the face of constant bacterial challenges. The gut microbiota has evolved with the host, and its symbiotic state with the host’s gut epithelium is a testament to this co-evolution. However, certain microbial subpopulations may expand during pathological interventions, disrupting the delicate species-level microbial equilibrium and triggering inflammation and tumorigenesis. This review highlights the impact of gut microbiota dysbiosis on the development and progression of certain types of cancers and discusses the potential for developing new therapeutic strategies against cancer by manipulating the gut microbiota. By interacting with the host microbiota, we may be able to enhance the effectiveness of anticancer therapies and open new avenues for improving patient outcomes.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 13 ( 2022-7-26)
    Abstract: Rice is a staple food for more than 50% of the global population and it is one of the most valuable cereal crops. To fulfill the dietary requirement of the ever-growing world population, an increase in per-unit production of rice is direly required. In Pakistan, it stands as the 2nd in consumption after wheat, which is a staple food. A huge gap is observed between yield potential and actual yield of the aromatic rice cultivars at a farmer-field level. The significant limitations responsible for this gap are shortage of irrigation water, inappropriate application of fertilizers, less plant population, deficiency of micronutrients, and improper and poor plant protection measures. A field study was planned to assess the yield response and quality attributes of aromatic rice to three levels of zinc (Zn) and nitrogen (N) under three irrigation regimes (8-, 12-, and 16-acre inches) in the Sheikhupura and Sargodha districts of Pakistan. Irrigation treatments significantly influenced the growth, yield, and quality attributes; however, maximum improvement was observed by the application of irrigation at 12-acre inches. Among the Zn treatments, application of Zn at 10 kg ha –1 was observed to be more responsive to improving the growth and quality parameters of aromatic rice crops. In the case of N treatments, application of N at 140 kg ha –1 produced the maximum total tillers, as well as productive tillers per hill, spikelets per panicle, leaf area index, leaf area duration, crop growth rate, total dry matter, harvest index, kernel length, kernel width, and 1,000-kernel weight. Application of N at 140 kg ha –1 not only improved the growth attributes but also increased the net assimilation rate, photosynthetically active radiation, and radiation use efficiency, with respect to total dry matter and kernel yield. The maximum percentage of normal kernels and minimum percentage of opaque, abortive, and chalky kernels were also recorded by application of N at 140 kg ha –1 . The outcomes of current experiments depicted that application of irrigational water, zinc, and nitrogen at 12-acre inches, 10, and 140 kg ha –1 , respectively, are responsible to achieve maximum resource utilization efficiency, along with increased yield and quality of rice.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Genetics Vol. 13 ( 2022-4-19)
    In: Frontiers in Genetics, Frontiers Media SA, Vol. 13 ( 2022-4-19)
    Abstract: Plants offer a habitat for a range of interactions to occur among different stress factors. Epigenetics has become the most promising functional genomics tool, with huge potential for improving plant adaptation to biotic and abiotic stresses. Advances in plant molecular biology have dramatically changed our understanding of the molecular mechanisms that control these interactions, and plant epigenetics has attracted great interest in this context. Accumulating literature substantiates the crucial role of epigenetics in the diversity of plant responses that can be harnessed to accelerate the progress of crop improvement. However, harnessing epigenetics to its full potential will require a thorough understanding of the epigenetic modifications and assessing the functional relevance of these variants. The modern technologies of profiling and engineering plants at genome-wide scale provide new horizons to elucidate how epigenetic modifications occur in plants in response to stress conditions. This review summarizes recent progress on understanding the epigenetic regulation of plant stress responses, methods to detect genome-wide epigenetic modifications, and disentangling their contributions to plant phenotypes from other sources of variations. Key epigenetic mechanisms underlying stress memory are highlighted. Linking plant response with the patterns of epigenetic variations would help devise breeding strategies for improving crop performance under stressed scenarios.
    Type of Medium: Online Resource
    ISSN: 1664-8021
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606823-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...