GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (1)
  • 1
    In: Frontiers in Medicine, Frontiers Media SA, Vol. 9 ( 2022-4-28)
    Abstract: Computed tomography (CT) lung nodule assessment is routinely performed and appears very promising for lung cancer screening. However, the radiation exposure through time remains a concern. With the overall goal of an optimal management of indeterminate lung nodules, the objective of this prospective study was therefore to evaluate the potential of optimized ultra-short echo time (UTE) MRI for lung nodule detection and volumetric assessment. Materials and Methods Eight (54.9 ± 13.2 years) patients with at least 1 non-calcified nodule ≥4 mm were included. UTE under high-frequency non-invasive ventilation (UTE-HF-NIV) and in free-breathing at tidal volume (UTE-FB) were investigated along with volumetric interpolated breath-hold examination at full inspiration (VIBE-BH). Three experienced readers assessed the detection rate of nodules ≥4 mm and ≥6 mm, and reported their location, 2D-measurements and solid/subsolid nature. Volumes were measured by two experienced readers. Subsequently, two readers assessed the detection and volume measurements of lung nodules ≥4mm in gold-standard CT images with soft and lung kernel reconstructions. Volumetry was performed with lesion management software (Carestream, Rochester, New York, USA). Results UTE-HF-NIV provided the highest detection rate for nodules ≥4 mm ( n = 66) and ≥6 mm ( n = 32) (35 and 50%, respectively). No dependencies were found between nodule detection and their location in the lung with UTE-HF-NIV ( p & gt; 0.4), such a dependency was observed for two readers with VIBE-BH ( p = 0.002 and 0.03). Dependencies between the nodule's detection and their size were noticed among readers and techniques ( p & lt; 0.02). When comparing nodule volume measurements, an excellent concordance was observed between CT and UTE-HF-NIV, with an overestimation of 13.2% by UTE-HF-NIV, & lt;25%-threshold used for nodule's growth, conversely to VIBE-BH that overestimated the nodule volume by 28.8%. Conclusion UTE-HF-NIV is not ready to replace low-dose CT for lung nodule detection, but could be used for follow-up studies, alternating with CT, based on its volumetric accuracy.
    Type of Medium: Online Resource
    ISSN: 2296-858X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2775999-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...