GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (2)
  • Springer Science and Business Media LLC  (2)
  • 1
    facet.materialart.
    Unknown
    Springer Science and Business Media LLC
    In:  EPIC3Helgoland Marine Research, Springer Science and Business Media LLC, 72(1), pp. 9-, ISSN: 1438-387X
    Publication Date: 2022-11-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-10
    Description: 〈jats:p〉Consumer regulation of lipid composition during assimilation of dietary items is related to their ecology, habitat, and life cycle, and may lead to extra energetic costs associated with the conversion of dietary material into the fatty acids (FAs) necessary to meet metabolic requirements. For example, lipid-rich copepods from temperate and polar latitudes must convert assimilated dietary FAs into wax esters, an efficient type of energy storage which enables them to cope with seasonal food shortages and buoyancy requirements. Lipid-poor copepods, however, tend to not be as constrained by food availability as their lipid-rich counterparts and, thus, should have no need for modifying dietary FAs. Our objective was to test the assumption that 〈jats:italic〉Temora longicornis〈/jats:italic〉, a proxy species for lipid-poor copepods, does not regulate its lipid composition. Isotopically-enriched (〈jats:sup〉13〈/jats:sup〉C) diatoms were fed to copepods during a 5-day laboratory experiment. Compound-specific stable isotope analysis of algae and copepod samples was performed in order to calculate dietary FA assimilation, turnover, and assimilation efficiency into copepod FAs. Approximately 65% of the total dietary lipid carbon (C) assimilated (913 ± 68 ng C ind〈jats:sup〉-1〈/jats:sup〉 at the end of the experiment) was recorded as polyunsaturated FAs, with 20 and 15% recorded as saturated and monounsaturated FAs, respectively. As expected, 〈jats:italic〉T. longicornis〈/jats:italic〉 assimilated dietary FAs in an unregulated, non-homeostatic manner, as evidenced by the changes in its FA profile, which became more similar to that of their diet. Copepods assimilated 11% of the total dietary C (or 40% of the dietary lipid C) ingested in the first two days of the experiment. In addition, 34% of their somatic growth (in C) after two days was due to the assimilation of dietary C in FAs. Global warming may lead to increased proportions of smaller copepods in the oceans, and to a lower availability of algae-produced essential FAs. In order for changes in the energy transfer in marine food webs to be better understood, it is important that future investigations assess a broader range of diets as well as lipid-poor zooplankton from oceanographic areas throughout the world’s oceans.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer Science and Business Media LLC
    In:  EPIC3Communications Biology, Springer Science and Business Media LLC, 5(1), pp. 179-, ISSN: 2399-3642
    Publication Date: 2023-06-21
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Global change puts coastal marine systems under pressure, affecting community structure and functioning. Here, we conducted a mesocosm experiment with an integrated multiple driver design to assess the impact of future global change scenarios on plankton, a key component of marine food webs. The experimental treatments were based on the RCP 6.0 and 8.5 scenarios developed by the IPCC, which were Extended (ERCP) to integrate the future predicted changing nutrient inputs into coastal waters. We show that simultaneous influence of warming, acidification, and increased N:P ratios alter plankton dynamics, favours smaller phytoplankton species, benefits microzooplankton, and impairs mesozooplankton. We observed that future environmental conditions may lead to the rise of 〈jats:italic〉Emiliania huxleyi〈/jats:italic〉 and demise of 〈jats:italic〉Noctiluca scintillans〈/jats:italic〉, key species for coastal planktonic food webs. In this study, we identified a tipping point between ERCP 6.0 and ERCP 8.5 scenarios, beyond which alterations of food web structure and dynamics are substantial.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Frontiers Media SA
    In:  EPIC3Frontiers in Physiology, Frontiers Media SA, 13, pp. 809929-, ISSN: 1664-042X
    Publication Date: 2023-06-21
    Description: 〈jats:p〉Climate change combined with anthropogenic stressors (e.g. overfishing, habitat destruction) may have particularly strong effects on threatened populations of coastal invertebrates. The collapse of the population of European lobster (〈jats:italic〉Homarus gammarus〈/jats:italic〉) around Helgoland constitutes a good example and prompted a large-scale restocking program. The question arises if recruitment of remaining natural individuals and program-released specimens could be stunted by ongoing climate change. We examined the joint effect of ocean warming and acidification on survival, development, morphology, energy metabolism and enzymatic antioxidant activity of the larval stages of the European lobster. Larvae from four independent hatches were reared from stage I to III under a gradient of 10 seawater temperatures (13–24°C) combined with moderate (∼470 µatm) and elevated (∼1160 µatm) seawater 〈jats:italic〉p〈/jats:italic〉CO〈jats:sub〉2〈/jats:sub〉 treatments. Those treatments correspond to the shared socio-economic pathways (SSP), SSP1-2.6 and SSP5-8.5 (i.e. the low and the very high greenhouse gas emissions respectively) projected for 2100 by the Intergovernmental Panel on Climate Change. Larvae under the elevated 〈jats:italic〉p〈/jats:italic〉CO〈jats:sub〉2〈/jats:sub〉 treatment had not only lower survival rates, but also significantly smaller rostrum length. However, temperature was the main driver of energy demands with increased oxygen consumption rates and elemental C:N ratio towards warmer temperatures, with a reducing effect on development time. Using this large temperature gradient, we provide a more precise insight on the aerobic thermal window trade-offs of lobster larvae and whether exposure to the worst hypercapnia scenario may narrow it. This may have repercussions on the recruitment of the remaining natural and program-released specimens and thus, in the enhancement success of future lobster stocks.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...