GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Indonesian throughflow  (1)
  • Subsurface currents  (1)
  • Frontiers Media  (2)
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goni, G. J., Sprintall, J., Bringas, F., Cheng, L., Cirano, M., Dong, S., Domingues, R., Goes, M., Lopez, H., Morrow, R., Rivero, U., Rossby, T., Todd, R. E., Trinanes, J., Zilberman, N., Baringer, M., Boyer, T., Cowley, R., Domingues, C. M., Hutchinson, K., Kramp, M., Mata, M. M., Reseghetti, F., Sun, C., Bhaskar, U., & Volko, D. More than 50 years of successful continuous temperature section measurements by the global expendable bathythermograph network, its integrability, societal benefits, and future. Frontiers in Marine Science, 6, (2019): 452, doi:10.3389/fmars.2019.00452.
    Description: The first eXpendable BathyThermographs (XBTs) were deployed in the 1960s in the North Atlantic Ocean. In 1967 XBTs were deployed in operational mode to provide a continuous record of temperature profile data along repeated transects, now known as the Global XBT Network. The current network is designed to monitor ocean circulation and boundary current variability, basin-wide and trans-basin ocean heat transport, and global and regional heat content. The ability of the XBT Network to systematically map the upper ocean thermal field in multiple basins with repeated trans-basin sections at eddy-resolving scales remains unmatched today and cannot be reproduced at present by any other observing platform. Some repeated XBT transects have now been continuously occupied for more than 30 years, providing an unprecedented long-term climate record of temperature, and geostrophic velocity profiles that are used to understand variability in ocean heat content (OHC), sea level change, and meridional ocean heat transport. Here, we present key scientific advances in understanding the changing ocean and climate system supported by XBT observations. Improvement in XBT data quality and its impact on computations, particularly of OHC, are presented. Technology development for probes, launchers, and transmission techniques are also discussed. Finally, we offer new perspectives for the future of the Global XBT Network.
    Description: GG, FB, SD, UR, MB, RD, and DV were supported by a grant from the NOAA/Ocean Observing and Monitoring Division (OOMD) and by NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML). The participation of JS and NZ in this study was supported by NOAA's Global Ocean Monitoring and Observing Program through Award NA15OAR4320071 and NSF Award 1542902. CD was funded by the Australian Research Council (FT130101532 and DP160103130); the Scientific Committee on Oceanic Research (SCOR) Working Group 148, funded by national SCOR committees and a grant to SCOR from the U.S. National Science Foundation (Grant OCE-1546580); and the Intergovernmental Oceanographic Commission of UNESCO/International Oceanographic Data and Information Exchange (IOC/IODE) IQuOD Steering Group. LC was supported by 2016YFC1401800.
    Keywords: Expendable bathythermographs ; Surface currents ; Subsurface currents ; Meridional heat transport ; Ocean heat content ; Sea level ; Extreme weather
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sprintall, J., Gordon, A. L., Wijffels, S. E., Feng, M., Hu, S., Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A., Pujiana, K., Susanto, R. D., Sloyan, B., Yuan, D., Riama, N. F., Siswanto, S., Kuswardani, A., Arifin, Z., Wahyudi, A. J., Zhou, H., Nagai, T., Ansong, J. K., Bourdalle-Badie, R., Chanuts, J., Lyard, F., Arbic, B. K., Ramdhani, A., & Setiawan, A. Detecting change in the Indonesian Seas. Frontiers in Marine Science, 6, (2019):257, doi:10.3389/fmars.2019.00257.
    Description: The Indonesian seas play a fundamental role in the coupled ocean and climate system with the Indonesian Throughflow (ITF) providing the only tropical pathway connecting the global oceans. Pacific warm pool waters passing through the Indonesian seas are cooled and freshened by strong air-sea fluxes and mixing from internal tides to form a unique water mass that can be tracked across the Indian Ocean basin and beyond. The Indonesian seas lie at the climatological center of the atmospheric deep convection associated with the ascending branch of the Walker Circulation. Regional SST variations cause changes in the surface winds that can shift the center of atmospheric deep convection, subsequently altering the precipitation and ocean circulation patterns within the entire Indo-Pacific region. Recent multi-decadal changes in the wind and buoyancy forcing over the tropical Indo-Pacific have directly affected the vertical profile, strength, and the heat and freshwater transports of the ITF. These changes influence the large-scale sea level, SST, precipitation and wind patterns. Observing long-term changes in mass, heat and freshwater within the Indonesian seas is central to understanding the variability and predictability of the global coupled climate system. Although substantial progress has been made over the past decade in measuring and modeling the physical and biogeochemical variability within the Indonesian seas, large uncertainties remain. A comprehensive strategy is needed for measuring the temporal and spatial scales of variability that govern the various water mass transport streams of the ITF, its connection with the circulation and heat and freshwater inventories and associated air-sea fluxes of the regional and global oceans. This white paper puts forward the design of an observational array using multi-platforms combined with high-resolution models aimed at increasing our quantitative understanding of water mass transformation rates and advection within the Indonesian seas and their impacts on the air-sea climate system. Introduction
    Description: JS acknowledges funding to support her effort by the National Science Foundation under Grant Number OCE-1736285 and NOAA’s Climate Program Office, Climate Variability and Predictability Program under Award Number NA17OAR4310257. SH was supported by the National Natural Science Foundation of China (Grant 41776018) and the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SYS023). HP acknowledges support from the Australian Government’s National Environmental Science Programme. HZ acknowledges support from National Science Foundation under Grant No. 41876009. RS was supported by National Science Foundation Grant No. OCE-07-25935; Office of Naval Research Grant No. N00014-08-01-0618 and National Aeronautics and Space Administration Grant No. 80NSSC18K0777. SW, MF, and BS were supported by Center for Southern Hemisphere Oceans Research (CSHOR), which is a joint initiative between the Qingdao National Laboratory for Marine Science and Technology (QNLM), CSIRO, University of New South Wales and University of Tasmania.
    Keywords: Indonesian throughflow ; Observing system ; Intraseasonal ; ENSO ; Transport variability ; Planetary waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...