GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (13)
  • Frontiers Media  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2022-11-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tuchen, F., Brandt, P., Hahn, J., Hummels, R., Krahmann, G., Bourlès, B., Provost, C., McPhaden, M., & Toole, J. Two decades of full-depth current velocity observations from a moored observatory in the central equatorial Atlantic at 0°N, 23°W. Frontiers in Marine Science, 9, (2022): 910979, https://doi.org/10.3389/fmars.2022.910979.
    Description: Regional climate variability in the tropical Atlantic, from interannual to decadal time scales, is inevitably connected to changes in the strength and position of the individual components of the tropical current system with impacts on societally relevant climate hazards such as anomalous rainfall or droughts over the surrounding continents (Bourlès et al., 2019; Foltz et al., 2019). Furthermore, the lateral supply of dissolved oxygen in the tropical Atlantic upper-ocean is closely linked to the zonal current bands (Brandt et al., 2008; Brandt et al., 2012; Burmeister et al., 2020) and especially to the Equatorial Undercurrent (EUC) and its long-term variations with potential implications for regional marine ecosystems (Brandt et al., 2021). The eastward flowing EUC is located between 70 to 200 m depth and forms one of the strongest tropical currents with maximum velocities of up to 1 m s-1 and maximum variability on seasonal time scales (Brandt et al., 2014; Johns et al., 2014). In the intermediate to deep equatorial Atlantic, variability on longer time scales is mainly governed by alternating, vertically-stacked, zonal currents (equatorial deep jets (EDJs); Johnson and Zhang, 2003). At a fixed location, the phases of these jets are propagating downward with time, implying that parts of their energy must propagate upward towards the surface (Brandt et al., 2011). In fact, a pronounced interannual cycle of about 4.5 years, that is associated with EDJs, is projected onto surface parameters such as sea surface temperature or precipitation (Brandt et al., 2011) further demonstrating the importance of understanding equatorial circulation variability and its role in tropical climate variability.
    Description: This study was funded by EU H2020 under grant agreement 817578 TRIATLAS project, by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich754 “Climate–Biogeochemistry Interactions in the Tropical Ocean” and through several research cruises with RV Meteor, RV Maria S. Merian, RV L'Atalante, and RV Sonne and by the Deutsche Bundesministerium für Bildung und Forschung (BMBF) as part of the projects RACE (03F06518) and by the European Union 7th Framework Programme (FP7) under Grant Agreement 603521. Moored velocity observations were acquired in cooperation with the PIRATA project supported by NOAA (USA), IRD and Meteo-France (France), INPE (Brazil) and the Brazil Navy. This research was performed while FPT held an NRC Research Associateship Award at NOAA’s Atlantic Oceanographic and Meteorological Laboratory. FPT, PB, JH, RH, and GK are grateful for continuing support from GEOMAR Helmholtz Centre for Ocean Research Kiel. MM acknowledges the support of NOAA; PMEL contribution no. 5359. JT's contributions to this study were supported by the U.S. National Science Foundation.
    Keywords: Ocean observations ; Physical oceanography ; Equatorial Atlantic circulation ; Ocean currents ; Moored observations ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-27
    Description: This dataset is a collection of moored velocity data used in the study “Sources and pathways of intraseasonal meridional kinetic energy in the equatorial Atlantic Ocean” (Körner et al., 2022) to analyze the representation of meridional intraseasonal velocity variability in a general circulation model. The observational velocity data were collected at five different locations along the equator. At 0°N, 35°W velocity data were collected by single-point current meters in four different depths from October 1992 until May 1994. Between August 2004 and June 2006 an acoustic Doppler current profiler (ADCP) and single-point current meters collected data at 0°N, 35°W. Moorings at 0°N, 23°W provide velocity measurements from December 2001 to June 2021 (apart from a period from December 2002 to February 2004 when no mooring was in place). At 0°N, 10°W velocity data were collected between May 2003 to March 2019 using ADCPs and single-point current meters. However, the mooring was not consecutively installed leading to data gaps of up to two years. Between 2007 and 2011 ADCPs recorded velocity data at 0°N, 0°E.
    Type: Dataset
    Format: 18 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-27
    Description: The shallow meridional overturning cells of the Atlantic Ocean, the Subtropical Cells (STCs), consist of poleward Ekman transport at the surface, subduction in the subtropics, equatorward flow at thermocline level and upwelling along the equator and at the eastern boundary. In this study we provide the first observational estimate of transport variability associated with the horizontal branches of the Atlantic STCs in both hemispheres based on Argo float data and supplemented by reanalysis products. Thermocline layer transport convergence and surface layer transport divergence between 10°N and 10°S are dominated by seasonal variability. Meridional thermocline layer transport anomalies at the western boundary and in the interior basin are anti-correlated and partially compensate each other at all resolved time scales. It is suggested that the seesaw-like relation is forced by the large-scale off-equatorial wind stress changes through low-baroclinic-mode Rossby wave adjustment. We further show that anomalies of the thermocline layer interior transport convergence modulate sea surface temperature (SST) variability in the upwelling regions along the equator and at the eastern boundary at time scales longer than 5 years. Phases of weaker (stronger) interior transport are associated with phases of higher (lower) equatorial SST. At these time scales, STC transport variability is forced by off-equatorial wind stress changes, especially by those in the southern hemisphere. At shorter time scales, equatorial SST anomalies are, instead, mainly forced by local changes of zonal wind stress.
    Keywords: BANINO; Benguela Niños: Physikalische Prozesse und langperiodische Variabilität; Climate - Biogeochemistry Interactions in the Tropical Ocean; RACE; Regional Atlantic Circulation and global Change; SFB754; TRIATLAS; Tropical and South Atlantic climate-based marine ecosystem predictions for sustainable management
    Type: Dataset
    Format: 16 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-02
    Description: The processing was done as described in Bunge et al. (2008) and in Bourlès Bernard et al (2020): French PIRATA cruises: MOORING ADCP data. SEANOE. https://doi.org/10.17882/51557
    Keywords: Current velocity, east-west; Current velocity, north-south; DATE/TIME; DEPTH, water; Flag; KPO_0611; MOOR; Mooring; Pressure, water; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 518944 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-02
    Description: The processing was done as described in Bunge et al. (2008) and in Bourlès Bernard et al (2020): French PIRATA cruises: MOORING ADCP data. SEANOE. https://doi.org/10.17882/51557
    Keywords: Current velocity, east-west; Current velocity, north-south; DATE/TIME; DEPTH, water; Flag; KPO_0612; MOOR; Mooring; Pressure, water; Sample code/label
    Type: Dataset
    Format: text/tab-separated-values, 1465496 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-02
    Description: The processing was done as described in Bunge et al. (2008) and in Bourlès Bernard et al (2020): French PIRATA cruises: MOORING ADCP data. SEANOE. https://doi.org/10.17882/51557
    Keywords: Current velocity, east-west; Current velocity, north-south; DATE/TIME; DEPTH, water; Flag; KPO_0613; MOOR; Mooring; Pressure, water; Sample code/label; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1364420 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-08
    Description: Current velocities of the upper water column along the cruise track of R/V Maria S. Merian cruise MSM117 were collected by a vessel-mounted 38 kHz RDI Ocean Surveyor ADCP. The ADCP transducer was located at 6.0 m below the water line. The instrument was operated in two different configurations: 1) broadband mode with 32 m bins and a blanking distance of 16 m, with a total of 50 bins, 2) narrowband mode with 32 m bins and a blanking distance of 16 m, with a total of 50 bins. Beam velocities as recorded by the data acquistion software VmDAS were transformed to ship coordinates and after merging with the navigation data from the ship's Motion Reference Unit and Global Positioning systems into earth coordinates. Single-ping data were screened for bottom signals and, where appropriate, a bottom mask was manually processed. The ship's velocity was calculated from position fixes obtained by the Global Positioning System (GPS). Accuracy of the ADCP velocities mainly depends on the quality of the position fixes and the ship's heading data. Further errors stem from a misalignment of the transducer with the ship's centerline. Data post-processing included water track calibration of the misalignment angle (configuration 1: 0.3196° +/- 0.8714°, configuration 2: 0.3603° +/- 0.6433°) and scale factor (configuration1: 1.0007 +/- 0.0151, configuration 2: 1.0024 +/- 0.0107) of the Ocean Surveyor signal. The velocity data were averaged in time using an average interval of 60 s. Velocity quality flagging is based on following threshold criteria: abs(UC) or abs(VC) 〉 2.0 m/s, rms(UC_z) or rms(VC_z) 〉 0.3.
    Keywords: Current velocity, east-west; Current velocity, north-south; DAM_Underway; DAM Underway Research Data; DATE/TIME; DEPTH, water; Echo intensity, relative; LATITUDE; LONGITUDE; Maria S. Merian; MSM117; MSM117_0_Underway-5; Pings, averaged to a double ensemble value; Quality flag, current velocity; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); Vessel mounted Acoustic Doppler Current Profiler [38 kHz]; VMADCP-38; WB Circ Brazil
    Type: Dataset
    Format: text/tab-separated-values, 9215290 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-08
    Description: Current velocities of the upper water column along the cruise track of R/V Maria S. Merian cruise MSM117 were collected by a vessel-mounted 75 kHz RDI Ocean Surveyor ADCP. The ADCP transducer was located at 6.0 m below the water line. The instrument was operated in two different configurations: 1) narrowband mode with 8 m bins and a blanking distance of 8 m, with a total of 100 bins, 2) broadband mode with 5 m bins and a blanking distance of 5 m, with a total of 128 bins. Heading, pitch and roll data from the ship's motion reference unit and the navigation data from the Global Positioning systems were used by the data acquisition software VmDAS internally to convert ADCP velocities into earth coordinates. Single-ping data were screened for bottom signals and, where appropriate, a bottom mask was manually processed. The ship's velocity was calculated from position fixes obtained by the Global Positioning System (GPS). Accuracy of the ADCP velocities mainly depends on the quality of the position fixes and the ship's heading data. Further errors stem from a misalignment of the transducer with the ship's centerline. Data post-processing included water track calibration of the misalignment angle (configuration 1: -47.4696° +/- 0.7022°, configuration 2: -47.4676° +/- 0.9771°) and scale factor (configuration1: 1.0081 +/- 0.0114, configuration 2: 1.0086 +/- 0.0161) of the Ocean Surveyor signal. The velocity data were averaged in time using an average interval of 60 s. Velocity quality flagging is based on following threshold criteria: abs(UC) or abs(VC) 〉 2.0 m/s, rms(UC_z) or rms(VC_z) 〉 0.3.
    Keywords: Current velocity, east-west; Current velocity, north-south; DAM_Underway; DAM Underway Research Data; DATE/TIME; DEPTH, water; Echo intensity, relative; LATITUDE; LONGITUDE; Maria S. Merian; MSM117; MSM117_0_Underway-4; Pings, averaged to a double ensemble value; Quality flag, current velocity; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); Vessel mounted Acoustic Doppler Current Profiler [75 kHz]; VMADCP-75; WB Circ Brazil
    Type: Dataset
    Format: text/tab-separated-values, 20535010 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-02
    Description: GEOMAR moorings are typically equipped with instruments recording pressure, temperature, conductivity, dissolved oxygen and current velocity. Instruments with pressure, temperature, conductivity and oxygen sensors were calibrated in situ immediately prior to and after a mooring deployment period by attaching them to the CTD frame during CTDO casts. Correction terms were then developed from the difference between the sensor readings and the calibrated CTDO data during several minute long calibration stops. These correction terms were then applied to the full deployment periods. This ensured best data quality with recognition of potential sensor drifts and also allowed for the estimation of calibration and measurement errors (Hahn et al. 2014, Bittig et al. 2018, Berx et al. 2019).
    Keywords: Current velocity, east-west; Current velocity, north-south; DATE/TIME; DEPTH, water; Flag; KPO_1201; M145; M145_52-1; M158; M158_187-1; Meteor (1986); MOOR; Mooring; Oxygen; Pressure, water; Salinity; Sample code/label; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 6723516 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-20
    Keywords: Binary Object; Binary Object (File Size); Binary Object (Media Type); Climate - Biogeochemistry Interactions in the Tropical Ocean; Description; Equatorial Atlantic; Physical oceanographic data; PIRATA; Prediction and Research Moored Array in the Tropical Atlantic; RACE; Regional Atlantic Circulation and global Change; SFB754; TRIATLAS; Tropical and South Atlantic climate-based marine ecosystem predictions for sustainable management
    Type: Dataset
    Format: text/tab-separated-values, 2 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...