GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-24
    Description: An intercomparison of four low-resolution remotely sensed ice-drift products in the Arctic Ocean is presented. The purpose of the study is to examine the uncertainty in space and time of these different drift products. The comparison is based on monthly mean ice drifts from October 2002 to December 2006. The ice drifts were also compared with available buoy data. The result shows that the differences of the drift vectors are not spatially uniform, but are covariant with ice concentration and thickness. In high (low) ice-concentration areas, the differences are small (large), and in thick (thin) ice-thickness areas, the differences are small (large). A comparison with the drift deduced from buoys reveals that the error of the drift speed depends on the magnitude of the drift speed: larger drift speeds have larger errors. Based on the intercomparison of the products and comparison with buoy data, uncertainties of the monthly mean drift are estimated. The estimated uncertainty maps reasonably reflect the difference between the products in relation to ice concentration and the bias from the buoy drift in relation to drift speed. Examinations of distinctive features of Arctic sea ice motion demonstrate that the transpolar drift speed differs among the products by 13% (0.32 cm s−1) on average, and ice drift curl in the Amerasian Basin differs by up to 24% (3.3 × 104 m2 s−1). These uncertainties should be taken into account if these products are used, particularly for model validation and data assimilation within the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-12
    Description: We present a comprehensive review of the current status of remotely sensed and in situ sea ice, ocean, and land parameters acquired over the Arctic and Antarctic and identify current data gaps through comparison with the portfolio of products provided by Copernicus services. While we include several land parameters, the focus of our review is on the marine sector. The analysis is facilitated by the outputs of the KEPLER H2020 project. This project developed a road map for Copernicus to deliver an improved European capacity for monitoring and forecasting of the Polar Regions, including recommendations and lessons learnt, and the role citizen science can play in supporting Copernicus’ capabilities and giving users ownership in the system. In addition to summarising this information we also provide an assessment of future satellite missions (in particular the Copernicus Sentinel Expansion Missions), in terms of the potential enhancements they can provide for environmental monitoring and integration/assimilation into modelling/forecast products. We identify possible synergies between parameters obtained from different satellite missions to increase the information content and the robustness of specific data products considering the end-users requirements, in particular maritime safety. We analyse the potential of new variables and new techniques relevant for assimilation into simulations and forecasts of environmental conditions and changes in the Polar Regions at various spatial and temporal scales. This work concludes with several specific recommendations to the EU for improving the satellite-based monitoring of the Polar Regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...